MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvfval Structured version   Visualization version   GIF version

Theorem grpoinvfval 28302
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvfval (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑈
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem grpoinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.3 . 2 𝑁 = (inv‘𝐺)
2 grpinvfval.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7617 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3eqeltrid 2920 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mptexg 6987 . . . 4 (𝑋 ∈ V → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
64, 5syl 17 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
7 rneq 5809 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2syl6eqr 2877 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 oveq 7165 . . . . . . 7 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
10 fveq2 6673 . . . . . . . 8 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
11 grpinvfval.2 . . . . . . . 8 𝑈 = (GId‘𝐺)
1210, 11syl6eqr 2877 . . . . . . 7 (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈)
139, 12eqeq12d 2840 . . . . . 6 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈))
148, 13riotaeqbidv 7120 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
158, 14mpteq12dv 5154 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
16 df-ginv 28275 . . . 4 inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))))
1715, 16fvmptg 6769 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
186, 17mpdan 685 . 2 (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
191, 18syl5eq 2871 1 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3497  cmpt 5149  ran crn 5559  cfv 6358  crio 7116  (class class class)co 7159  GrpOpcgr 28269  GIdcgi 28270  invcgn 28271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-ginv 28275
This theorem is referenced by:  grpoinvval  28303  grpoinvf  28312
  Copyright terms: Public domain W3C validator