MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid2 Structured version   Visualization version   GIF version

Theorem grpoinvid2 28308
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))

Proof of Theorem grpoinvid2
StepHypRef Expression
1 oveq1 7165 . . . 4 ((𝑁𝐴) = 𝐵 → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
21adantl 484 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grpolinv 28305 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
763adant3 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
87adantr 483 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
92, 8eqtr3d 2860 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈)
103, 5grpoinvcl 28303 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
113, 4grpolid 28295 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1210, 11syldan 593 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
13123adant3 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1413eqcomd 2829 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
1514adantr 483 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
16 oveq1 7165 . . . 4 ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
1716adantl 484 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
18 simprr 771 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
19 simprl 769 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2010adantrr 715 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
2118, 19, 203jca 1124 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
223grpoass 28282 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
2321, 22syldan 593 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
24233impb 1111 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
253, 4, 5grporinv 28306 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
2625oveq2d 7174 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
27263adant3 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
283, 4grporid 28296 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
29283adant2 1127 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
3024, 27, 293eqtrd 2862 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3130adantr 483 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3215, 17, 313eqtr2d 2864 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 799 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  GrpOpcgr 28268  GIdcgi 28269  invcgn 28270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-grpo 28272  df-gid 28273  df-ginv 28274
This theorem is referenced by:  rngonegmn1r  35222
  Copyright terms: Public domain W3C validator