MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvop Structured version   Visualization version   GIF version

Theorem grpoinvop 28313
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvop ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)))

Proof of Theorem grpoinvop
StepHypRef Expression
1 simp1 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ GrpOp)
2 simp2 1133 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
3 simp3 1134 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 grpasscan1.1 . . . . . . 7 𝑋 = ran 𝐺
5 grpasscan1.2 . . . . . . 7 𝑁 = (inv‘𝐺)
64, 5grpoinvcl 28304 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
763adant2 1127 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
84, 5grpoinvcl 28304 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
983adant3 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ 𝑋)
104grpocl 28280 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑁𝐵) ∈ 𝑋 ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)
111, 7, 9, 10syl3anc 1367 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)
124grpoass 28283 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))))
131, 2, 3, 11, 12syl13anc 1368 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))))
14 eqid 2824 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
154, 14, 5grporinv 28307 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺(𝑁𝐵)) = (GId‘𝐺))
16153adant2 1127 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝑁𝐵)) = (GId‘𝐺))
1716oveq1d 7174 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = ((GId‘𝐺)𝐺(𝑁𝐴)))
184grpoass 28283 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋 ∧ (𝑁𝐵) ∈ 𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))))
191, 3, 7, 9, 18syl13anc 1368 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))))
204, 14grpolid 28296 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
218, 20syldan 593 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
22213adant3 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
2317, 19, 223eqtr3d 2867 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝑁𝐴))
2423oveq2d 7175 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))) = (𝐴𝐺(𝑁𝐴)))
254, 14, 5grporinv 28307 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = (GId‘𝐺))
26253adant3 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁𝐴)) = (GId‘𝐺))
2713, 24, 263eqtrd 2863 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺))
284grpocl 28280 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
294, 14, 5grpoinvid1 28308 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺)))
301, 28, 11, 29syl3anc 1367 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺)))
3127, 30mpbird 259 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1536  wcel 2113  ran crn 5559  cfv 6358  (class class class)co 7159  GrpOpcgr 28269  GIdcgi 28270  invcgn 28271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-grpo 28273  df-gid 28274  df-ginv 28275
This theorem is referenced by:  grpoinvdiv  28317
  Copyright terms: Public domain W3C validator