![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpomuldivass | Structured version Visualization version GIF version |
Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpomuldivass | ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1210 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
2 | simpr2 1212 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
3 | grpdivf.1 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2724 | . . . . . 6 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
5 | 3, 4 | grpoinvcl 27608 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
6 | 5 | 3ad2antr3 1182 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
7 | 1, 2, 6 | 3jca 1379 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) |
8 | 3 | grpoass 27587 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶)))) |
9 | 7, 8 | syldan 488 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶)))) |
10 | simpl 474 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) | |
11 | 3 | grpocl 27584 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
12 | 11 | 3adant3r3 1176 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋) |
13 | simpr3 1214 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
14 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
15 | 3, 4, 14 | grpodivval 27619 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶))) |
16 | 10, 12, 13, 15 | syl3anc 1439 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶))) |
17 | 3, 4, 14 | grpodivval 27619 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶))) |
18 | 17 | 3adant3r1 1174 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶))) |
19 | 18 | oveq2d 6781 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺(𝐵𝐷𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶)))) |
20 | 9, 16, 19 | 3eqtr4d 2768 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ran crn 5219 ‘cfv 6001 (class class class)co 6765 GrpOpcgr 27573 invcgn 27575 /𝑔 cgs 27576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-grpo 27577 df-gid 27578 df-ginv 27579 df-gdiv 27580 |
This theorem is referenced by: ablomuldiv 27636 ablodivdiv 27637 ablo4pnp 33911 |
Copyright terms: Public domain | W3C validator |