![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpon0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
grpon0 | ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | grpolidinv 27664 | . 2 ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
3 | rexn0 4218 | . 2 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) → 𝑋 ≠ ∅) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 ∅c0 4058 ran crn 5267 (class class class)co 6813 GrpOpcgr 27652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-ov 6816 df-grpo 27656 |
This theorem is referenced by: 0ngrp 27674 rngone0 34023 |
Copyright terms: Public domain | W3C validator |