MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Visualization version   GIF version

Theorem grporcan 27679
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grporcan ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem grporcan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2758 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
31, 2grpoidinv2 27676 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺))))
4 simpr 479 . . . . . . . . 9 (((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → (𝐶𝐺𝑦) = (GId‘𝐺))
54reximi 3147 . . . . . . . 8 (∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
65adantl 473 . . . . . . 7 (((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺))) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
73, 6syl 17 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
87ad2ant2rl 802 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
9 oveq1 6818 . . . . . . . . . . . 12 ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦))
109ad2antll 767 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦))
111grpoass 27664 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋𝑦𝑋)) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
12113anassrs 1454 . . . . . . . . . . . . 13 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) ∧ 𝑦𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
1312adantlrl 758 . . . . . . . . . . . 12 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
1413adantrr 755 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
151grpoass 27664 . . . . . . . . . . . . . . 15 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋𝑦𝑋)) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
16153exp2 1448 . . . . . . . . . . . . . 14 (𝐺 ∈ GrpOp → (𝐵𝑋 → (𝐶𝑋 → (𝑦𝑋 → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))))))
1716imp42 621 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
1817adantllr 757 . . . . . . . . . . . 12 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
1918adantrr 755 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
2010, 14, 193eqtr3d 2800 . . . . . . . . . 10 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦)))
2120adantrrl 762 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦)))
22 oveq2 6819 . . . . . . . . . . 11 ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
2322ad2antrl 766 . . . . . . . . . 10 ((𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
2423adantl 473 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
25 oveq2 6819 . . . . . . . . . . 11 ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2625ad2antrl 766 . . . . . . . . . 10 ((𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2726adantl 473 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2821, 24, 273eqtr3d 2800 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = (𝐵𝐺(GId‘𝐺)))
291, 2grporid 27678 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
3029ad2antrr 764 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
311, 2grporid 27678 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3231ad2ant2r 800 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3332adantr 472 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3428, 30, 333eqtr3d 2800 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → 𝐴 = 𝐵)
3534exp45 643 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝑦𝑋 → ((𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵))))
3635rexlimdv 3166 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵)))
378, 36mpd 15 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵))
38 oveq1 6818 . . . 4 (𝐴 = 𝐵 → (𝐴𝐺𝐶) = (𝐵𝐺𝐶))
3937, 38impbid1 215 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
4039exp43 641 . 2 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)))))
41403imp2 1443 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wrex 3049  ran crn 5265  cfv 6047  (class class class)co 6811  GrpOpcgr 27650  GIdcgi 27651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-fo 6053  df-fv 6055  df-riota 6772  df-ov 6814  df-grpo 27654  df-gid 27655
This theorem is referenced by:  grpoinveu  27680  grpoid  27681  nvrcan  27786  ghomdiv  34002  rngorcan  34027  rngorz  34033
  Copyright terms: Public domain W3C validator