MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Visualization version   GIF version

Theorem grpsubinv 17428
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b 𝐵 = (Base‘𝐺)
grpsubinv.p + = (+g𝐺)
grpsubinv.m = (-g𝐺)
grpsubinv.n 𝑁 = (invg𝐺)
grpsubinv.g (𝜑𝐺 ∈ Grp)
grpsubinv.x (𝜑𝑋𝐵)
grpsubinv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpsubinv (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3 (𝜑𝑋𝐵)
2 grpsubinv.g . . . 4 (𝜑𝐺 ∈ Grp)
3 grpsubinv.y . . . 4 (𝜑𝑌𝐵)
4 grpsubinv.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpsubinv.n . . . . 5 𝑁 = (invg𝐺)
64, 5grpinvcl 17407 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
72, 3, 6syl2anc 692 . . 3 (𝜑 → (𝑁𝑌) ∈ 𝐵)
8 grpsubinv.p . . . 4 + = (+g𝐺)
9 grpsubinv.m . . . 4 = (-g𝐺)
104, 8, 5, 9grpsubval 17405 . . 3 ((𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
111, 7, 10syl2anc 692 . 2 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
124, 5grpinvinv 17422 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
132, 3, 12syl2anc 692 . . 3 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1413oveq2d 6631 . 2 (𝜑 → (𝑋 + (𝑁‘(𝑁𝑌))) = (𝑋 + 𝑌))
1511, 14eqtrd 2655 1 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  Grpcgrp 17362  invgcminusg 17363  -gcsg 17364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-sbg 17367
This theorem is referenced by:  issubg4  17553  isnsg3  17568  lsmelvalm  18006  ablsub2inv  18156  ablsubsub4  18164  istgp2  21835  nmtri  22370  baerlem5amN  36524  baerlem5abmN  36526
  Copyright terms: Public domain W3C validator