MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubpropd2 Structured version   Visualization version   GIF version

Theorem grpsubpropd2 18208
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1 (𝜑𝐵 = (Base‘𝐺))
grpsubpropd2.2 (𝜑𝐵 = (Base‘𝐻))
grpsubpropd2.3 (𝜑𝐺 ∈ Grp)
grpsubpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
grpsubpropd2 (𝜑 → (-g𝐺) = (-g𝐻))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpsubpropd2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑)
2 simp2 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
3 grpsubpropd2.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
433ad2ant1 1129 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺))
52, 4eleqtrrd 2919 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎𝐵)
6 grpsubpropd2.3 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
763ad2ant1 1129 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
8 simp3 1134 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
9 eqid 2824 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2824 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 18154 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
127, 8, 11syl2anc 586 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
1312, 4eleqtrrd 2919 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ 𝐵)
14 grpsubpropd2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1514oveqrspc2v 7186 . . . . . 6 ((𝜑 ∧ (𝑎𝐵 ∧ ((invg𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
161, 5, 13, 15syl12anc 834 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
17 grpsubpropd2.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐻))
183, 17, 14grpinvpropd 18177 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
1918fveq1d 6675 . . . . . . 7 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
2019oveq2d 7175 . . . . . 6 (𝜑 → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
21203ad2ant1 1129 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2216, 21eqtrd 2859 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2322mpoeq3dva 7234 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
243, 17eqtr3d 2861 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
25 mpoeq12 7230 . . . 4 (((Base‘𝐺) = (Base‘𝐻) ∧ (Base‘𝐺) = (Base‘𝐻)) → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2624, 24, 25syl2anc 586 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2723, 26eqtrd 2859 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
28 eqid 2824 . . 3 (+g𝐺) = (+g𝐺)
29 eqid 2824 . . 3 (-g𝐺) = (-g𝐺)
309, 28, 10, 29grpsubfval 18150 . 2 (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏)))
31 eqid 2824 . . 3 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2824 . . 3 (+g𝐻) = (+g𝐻)
33 eqid 2824 . . 3 (invg𝐻) = (invg𝐻)
34 eqid 2824 . . 3 (-g𝐻) = (-g𝐻)
3531, 32, 33, 34grpsubfval 18150 . 2 (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
3627, 30, 353eqtr4g 2884 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  cmpo 7161  Basecbs 16486  +gcplusg 16568  Grpcgrp 18106  invgcminusg 18107  -gcsg 18108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111
This theorem is referenced by:  ngppropd  23249
  Copyright terms: Public domain W3C validator