MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   GIF version

Theorem grpvlinv 21008
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvlinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))

Proof of Theorem grpvlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8429 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 498 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 484 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8430 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 484 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 grpvlinv.b . . . 4 𝐵 = (Base‘𝐺)
7 grpvlinv.z . . . 4 0 = (0g𝐺)
86, 7grpidcl 18133 . . 3 (𝐺 ∈ Grp → 0𝐵)
98adantr 483 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 grpvlinv.n . . . 4 𝑁 = (invg𝐺)
116, 10grpinvf 18152 . . 3 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1211adantr 483 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑁:𝐵𝐵)
13 fcompt 6897 . . 3 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1411, 4, 13syl2an 597 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
15 grpvlinv.p . . . 4 + = (+g𝐺)
166, 15, 7, 10grplinv 18154 . . 3 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
1716adantlr 713 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
183, 5, 9, 12, 14, 17caofinvl 7438 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  {csn 4569  cmpt 5148   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  m cmap 8408  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-1st 7691  df-2nd 7692  df-map 8410  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109
This theorem is referenced by:  mendring  39799
  Copyright terms: Public domain W3C validator