Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grstructd Structured version   Visualization version   GIF version

Theorem grstructd 25831
 Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
grstructd.s (𝜑𝑆𝑋)
grstructd.f (𝜑 → Fun (𝑆 ∖ {∅}))
grstructd.d (𝜑 → 2 ≤ (#‘dom 𝑆))
grstructd.b (𝜑 → (Base‘𝑆) = 𝑉)
grstructd.e (𝜑 → (.ef‘𝑆) = 𝐸)
Assertion
Ref Expression
grstructd (𝜑[𝑆 / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔   𝑆,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)   𝑋(𝑔)

Proof of Theorem grstructd
StepHypRef Expression
1 grstructd.s . 2 (𝜑𝑆𝑋)
2 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
3 grstructd.f . . . . 5 (𝜑 → Fun (𝑆 ∖ {∅}))
4 grstructd.d . . . . 5 (𝜑 → 2 ≤ (#‘dom 𝑆))
5 funvtxdmge2val 25798 . . . . 5 ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (#‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆))
63, 4, 5syl2anc 692 . . . 4 (𝜑 → (Vtx‘𝑆) = (Base‘𝑆))
7 grstructd.b . . . 4 (𝜑 → (Base‘𝑆) = 𝑉)
86, 7eqtrd 2655 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
9 funiedgdmge2val 25799 . . . . 5 ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (#‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆))
103, 4, 9syl2anc 692 . . . 4 (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆))
11 grstructd.e . . . 4 (𝜑 → (.ef‘𝑆) = 𝐸)
1210, 11eqtrd 2655 . . 3 (𝜑 → (iEdg‘𝑆) = 𝐸)
138, 12jca 554 . 2 (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))
14 nfcv 2761 . . 3 𝑔𝑆
15 nfv 1840 . . . 4 𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)
16 nfsbc1v 3438 . . . 4 𝑔[𝑆 / 𝑔]𝜓
1715, 16nfim 1822 . . 3 𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)
18 fveq2 6150 . . . . . 6 (𝑔 = 𝑆 → (Vtx‘𝑔) = (Vtx‘𝑆))
1918eqeq1d 2623 . . . . 5 (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉))
20 fveq2 6150 . . . . . 6 (𝑔 = 𝑆 → (iEdg‘𝑔) = (iEdg‘𝑆))
2120eqeq1d 2623 . . . . 5 (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸))
2219, 21anbi12d 746 . . . 4 (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)))
23 sbceq1a 3429 . . . 4 (𝑔 = 𝑆 → (𝜓[𝑆 / 𝑔]𝜓))
2422, 23imbi12d 334 . . 3 (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)))
2514, 17, 24spcgf 3274 . 2 (𝑆𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)))
261, 2, 13, 25syl3c 66 1 (𝜑[𝑆 / 𝑔]𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1478   = wceq 1480   ∈ wcel 1987  [wsbc 3418   ∖ cdif 3553  ∅c0 3893  {csn 4150   class class class wbr 4615  dom cdm 5076  Fun wfun 5843  ‘cfv 5849   ≤ cle 10022  2c2 11017  #chash 13060  Basecbs 15784  .efcedgf 25774  Vtxcvtx 25781  iEdgciedg 25782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-fz 12272  df-hash 13061  df-vtx 25783  df-iedg 25784 This theorem is referenced by:  grstructeld  25833
 Copyright terms: Public domain W3C validator