MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   GIF version

Theorem grudomon 10242
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)

Proof of Theorem grudomon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5072 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2 eleq1 2903 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
31, 2imbi12d 347 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑥𝑈) ↔ (𝑦𝐵𝑦𝑈)))
43imbi2d 343 . . . . . 6 (𝑥 = 𝑦 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))))
5 breq1 5072 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 eleq1 2903 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
75, 6imbi12d 347 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐵𝑥𝑈) ↔ (𝐴𝐵𝐴𝑈)))
87imbi2d 343 . . . . . 6 (𝑥 = 𝐴 → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈))))
9 r19.21v 3178 . . . . . . 7 (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) ↔ ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)))
10 simpl1 1187 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑥 ∈ On)
11 vex 3500 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
12 onelss 6236 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 409 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
14 ssdomg 8558 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑦𝑥𝑦𝑥))
1511, 13, 14mpsyl 68 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1610, 15sylan 582 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
17 simplr 767 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐵)
18 domtr 8565 . . . . . . . . . . . . . . 15 ((𝑦𝑥𝑥𝐵) → 𝑦𝐵)
1916, 17, 18syl2anc 586 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝐵)
20 pm2.27 42 . . . . . . . . . . . . . 14 (𝑦𝐵 → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) ∧ 𝑦𝑥) → ((𝑦𝐵𝑦𝑈) → 𝑦𝑈))
2221ralimdva 3180 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → ∀𝑦𝑥 𝑦𝑈))
23 dfss3 3959 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ ∀𝑦𝑥 𝑦𝑈)
24 domeng 8526 . . . . . . . . . . . . . . . 16 (𝐵𝑈 → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
25243ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵)))
2625biimpa 479 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ∃𝑦(𝑥𝑦𝑦𝐵))
27 simpl2 1188 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → 𝑈 ∈ Univ)
28 gruss 10221 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦𝐵) → 𝑦𝑈)
29283expia 1117 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
30293adant1 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈))
3130adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑦𝐵𝑦𝑈))
32 ensym 8561 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦𝑦𝑥)
3331, 32anim12d1 611 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝑈𝑦𝑥)))
3433ancomsd 468 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → ((𝑥𝑦𝑦𝐵) → (𝑦𝑈𝑦𝑥)))
3534eximdv 1917 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → ∃𝑦(𝑦𝑈𝑦𝑥)))
36 gruen 10237 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝑦𝑈𝑦𝑥)) → 𝑥𝑈)
37363com23 1122 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ (𝑦𝑈𝑦𝑥) ∧ 𝑥𝑈) → 𝑥𝑈)
38373exp 1115 . . . . . . . . . . . . . . . 16 (𝑈 ∈ Univ → ((𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
3938exlimdv 1933 . . . . . . . . . . . . . . 15 (𝑈 ∈ Univ → (∃𝑦(𝑦𝑈𝑦𝑥) → (𝑥𝑈𝑥𝑈)))
4027, 35, 39sylsyld 61 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∃𝑦(𝑥𝑦𝑦𝐵) → (𝑥𝑈𝑥𝑈)))
4126, 40mpd 15 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (𝑥𝑈𝑥𝑈))
4223, 41syl5bir 245 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 𝑦𝑈𝑥𝑈))
4322, 42syld 47 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) ∧ 𝑥𝐵) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈))
4443ex 415 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵 → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → 𝑥𝑈)))
4544com23 86 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈)))
46453expib 1118 . . . . . . . 8 (𝑥 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∀𝑦𝑥 (𝑦𝐵𝑦𝑈) → (𝑥𝐵𝑥𝑈))))
4746a2d 29 . . . . . . 7 (𝑥 ∈ On → (((𝑈 ∈ Univ ∧ 𝐵𝑈) → ∀𝑦𝑥 (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
489, 47syl5bi 244 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦𝐵𝑦𝑈)) → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑥𝐵𝑥𝑈))))
494, 8, 48tfis3 7575 . . . . 5 (𝐴 ∈ On → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵𝐴𝑈)))
5049com3l 89 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝐴𝐵 → (𝐴 ∈ On → 𝐴𝑈)))
5150impr 457 . . 3 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵)) → (𝐴 ∈ On → 𝐴𝑈))
52513impia 1113 . 2 ((𝑈 ∈ Univ ∧ (𝐵𝑈𝐴𝐵) ∧ 𝐴 ∈ On) → 𝐴𝑈)
53523com23 1122 1 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵𝑈𝐴𝐵)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wral 3141  Vcvv 3497  wss 3939   class class class wbr 5069  Oncon0 6194  cen 8509  cdom 8510  Univcgru 10215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-gru 10216
This theorem is referenced by:  gruina  10243  grur1  10245
  Copyright terms: Public domain W3C validator