MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruen Structured version   Visualization version   GIF version

Theorem gruen 9579
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruen ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)

Proof of Theorem gruen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bren 7909 . . . . 5 (𝐵𝐴 ↔ ∃𝑦 𝑦:𝐵1-1-onto𝐴)
2 f1ofo 6103 . . . . . . . . 9 (𝑦:𝐵1-1-onto𝐴𝑦:𝐵onto𝐴)
3 simp3l 1087 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝑦:𝐵onto𝐴)
4 forn 6077 . . . . . . . . . . . . 13 (𝑦:𝐵onto𝐴 → ran 𝑦 = 𝐴)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦 = 𝐴)
6 fof 6074 . . . . . . . . . . . . . 14 (𝑦:𝐵onto𝐴𝑦:𝐵𝐴)
7 fss 6015 . . . . . . . . . . . . . 14 ((𝑦:𝐵𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
86, 7sylan 488 . . . . . . . . . . . . 13 ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
9 grurn 9568 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦:𝐵𝑈) → ran 𝑦𝑈)
108, 9syl3an3 1358 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦𝑈)
115, 10eqeltrrd 2705 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝐴𝑈)
12113expia 1264 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝐴𝑈))
1312expd 452 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵onto𝐴 → (𝐴𝑈𝐴𝑈)))
142, 13syl5 34 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1514exlimdv 1863 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1615com3r 87 . . . . . 6 (𝐴𝑈 → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
1716expdimp 453 . . . . 5 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
181, 17syl7bi 245 . . . 4 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (𝐵𝐴𝐴𝑈)))
1918impd 447 . . 3 ((𝐴𝑈𝑈 ∈ Univ) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
2019ancoms 469 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
21203impia 1258 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1992  wss 3560   class class class wbr 4618  ran crn 5080  wf 5846  ontowfo 5848  1-1-ontowf1o 5849  cen 7897  Univcgru 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805  df-en 7901  df-gru 9558
This theorem is referenced by:  grudomon  9584  gruina  9585
  Copyright terms: Public domain W3C validator