![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grupr | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grupr | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 9652 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
2 | 1 | ibi 256 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
3 | 2 | simprd 478 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
4 | preq2 4301 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
5 | 4 | eleq1d 2715 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈)) |
6 | 5 | rspccv 3337 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵 ∈ 𝑈 → {𝑥, 𝐵} ∈ 𝑈)) |
7 | 6 | 3ad2ant2 1103 | . . . . . . 7 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐵 ∈ 𝑈 → {𝑥, 𝐵} ∈ 𝑈)) |
8 | 7 | com12 32 | . . . . . 6 ⊢ (𝐵 ∈ 𝑈 → ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈) → {𝑥, 𝐵} ∈ 𝑈)) |
9 | 8 | ralimdv 2992 | . . . . 5 ⊢ (𝐵 ∈ 𝑈 → (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 {𝑥, 𝐵} ∈ 𝑈)) |
10 | 3, 9 | syl5com 31 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐵 ∈ 𝑈 → ∀𝑥 ∈ 𝑈 {𝑥, 𝐵} ∈ 𝑈)) |
11 | preq1 4300 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
12 | 11 | eleq1d 2715 | . . . . 5 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈)) |
13 | 12 | rspccv 3337 | . . . 4 ⊢ (∀𝑥 ∈ 𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴 ∈ 𝑈 → {𝐴, 𝐵} ∈ 𝑈)) |
14 | 10, 13 | syl6 35 | . . 3 ⊢ (𝑈 ∈ Univ → (𝐵 ∈ 𝑈 → (𝐴 ∈ 𝑈 → {𝐴, 𝐵} ∈ 𝑈))) |
15 | 14 | com23 86 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐵 ∈ 𝑈 → {𝐴, 𝐵} ∈ 𝑈))) |
16 | 15 | 3imp 1275 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 𝒫 cpw 4191 {cpr 4212 ∪ cuni 4468 Tr wtr 4785 ran crn 5144 (class class class)co 6690 ↑𝑚 cmap 7899 Univcgru 9650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-tr 4786 df-iota 5889 df-fv 5934 df-ov 6693 df-gru 9651 |
This theorem is referenced by: grusn 9664 gruop 9665 gruun 9666 gruwun 9673 intgru 9674 |
Copyright terms: Public domain | W3C validator |