MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Structured version   Visualization version   GIF version

Theorem grur1a 10235
Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1a (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)

Proof of Theorem grur1a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6 𝐴 = (𝑈 ∩ On)
2 inss1 4204 . . . . . 6 (𝑈 ∩ On) ⊆ 𝑈
31, 2eqsstri 4000 . . . . 5 𝐴𝑈
4 sseq2 3992 . . . . 5 (𝑈 = ∅ → (𝐴𝑈𝐴 ⊆ ∅))
53, 4mpbii 235 . . . 4 (𝑈 = ∅ → 𝐴 ⊆ ∅)
6 ss0 4351 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
7 fveq2 6664 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
8 r10 9191 . . . . . 6 (𝑅1‘∅) = ∅
97, 8syl6eq 2872 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
10 0ss 4349 . . . . 5 ∅ ⊆ 𝑈
119, 10eqsstrdi 4020 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
125, 6, 113syl 18 . . 3 (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
1312a1i 11 . 2 (𝑈 ∈ Univ → (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈))
141gruina 10234 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
15 inawina 10106 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
16 winaon 10104 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
17 winalim 10111 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
18 r1lim 9195 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
1916, 17, 18syl2anc 586 . . . . 5 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
2014, 15, 193syl 18 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
21 inss2 4205 . . . . . . . . . . . 12 (𝑈 ∩ On) ⊆ On
221, 21eqsstri 4000 . . . . . . . . . . 11 𝐴 ⊆ On
2322sseli 3962 . . . . . . . . . 10 (𝑥𝐴𝑥 ∈ On)
24 eleq1 2900 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
25 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
2625, 8syl6eq 2872 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
2726eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2824, 27imbi12d 347 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (∅ ∈ 𝐴 → ∅ ∈ 𝑈)))
29 eleq1 2900 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
30 fveq2 6664 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
3130eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
3229, 31imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈)))
33 eleq1 2900 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
34 fveq2 6664 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
3534eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
3633, 35imbi12d 347 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
373sseli 3962 . . . . . . . . . . . . 13 (∅ ∈ 𝐴 → ∅ ∈ 𝑈)
3837a1i 11 . . . . . . . . . . . 12 (𝑈 ∈ Univ → (∅ ∈ 𝐴 → ∅ ∈ 𝑈))
39 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → suc 𝑦𝐴)
40 elelsuc 6257 . . . . . . . . . . . . . . . . . 18 (suc 𝑦𝐴 → suc 𝑦 ∈ suc 𝐴)
413sseli 3962 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝐴 → suc 𝑦𝑈)
4241ne0d 4300 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑦𝐴𝑈 ≠ ∅)
4314, 15, 163syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
4442, 43sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝐴 ∈ On)
45 eloni 6195 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
46 ordsucelsuc 7531 . . . . . . . . . . . . . . . . . . 19 (Ord 𝐴 → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4744, 45, 463syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4840, 47syl5ibr 248 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (suc 𝑦𝐴𝑦𝐴))
4939, 48mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝑦𝐴)
50 grupw 10211 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
5150ex 415 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ Univ → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
5251adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
53 r1suc 9193 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
5453eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
5554biimprcd 252 . . . . . . . . . . . . . . . . 17 (𝒫 (𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))
5652, 55syl6 35 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5749, 56embantd 59 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5857ex 415 . . . . . . . . . . . . . 14 (𝑈 ∈ Univ → (suc 𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
5958com23 86 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6059com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈))))
61 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
623sseli 3962 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴𝑥𝑈)
6362ne0d 4300 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝑈 ≠ ∅)
6463, 43sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝐴 ∈ On)
65 ontr1 6231 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
66 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
6765, 66syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
6867expd 418 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑦𝑥 → (𝑥𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
6968com3r 87 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 ∈ On → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7061, 64, 69sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7170imp 409 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ Univ ∧ 𝑥𝐴) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
7271ralimdva 3177 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
73 gruiun 10215 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈)
74733expia 1117 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7562, 74sylan2 594 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7672, 75syld 47 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
77 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
78 r1lim 9195 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
7977, 78mpan 688 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8079eleq1d 2897 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝑅1𝑥) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
8180biimprd 250 . . . . . . . . . . . . . . 15 (Lim 𝑥 → ( 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 → (𝑅1𝑥) ∈ 𝑈))
8276, 81sylan9r 511 . . . . . . . . . . . . . 14 ((Lim 𝑥 ∧ (𝑈 ∈ Univ ∧ 𝑥𝐴)) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))
8382exp32 423 . . . . . . . . . . . . 13 (Lim 𝑥 → (𝑈 ∈ Univ → (𝑥𝐴 → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))))
8483com34 91 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑈 ∈ Univ → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈))))
8528, 32, 36, 38, 60, 84tfinds2 7572 . . . . . . . . . . 11 (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈)))
8685com3r 87 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈)))
8723, 86mpd 15 . . . . . . . . 9 (𝑥𝐴 → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈))
8887impcom 410 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ∈ 𝑈)
89 gruelss 10210 . . . . . . . 8 ((𝑈 ∈ Univ ∧ (𝑅1𝑥) ∈ 𝑈) → (𝑅1𝑥) ⊆ 𝑈)
9088, 89syldan 593 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ⊆ 𝑈)
9190ralrimiva 3182 . . . . . 6 (𝑈 ∈ Univ → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
92 iunss 4961 . . . . . 6 ( 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈 ↔ ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9391, 92sylibr 236 . . . . 5 (𝑈 ∈ Univ → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9493adantr 483 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9520, 94eqsstrd 4004 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) ⊆ 𝑈)
9695ex 415 . 2 (𝑈 ∈ Univ → (𝑈 ≠ ∅ → (𝑅1𝐴) ⊆ 𝑈))
9713, 96pm2.61dne 3103 1 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   ciun 4911  Ord word 6184  Oncon0 6185  Lim wlim 6186  suc csuc 6187  cfv 6349  𝑅1cr1 9185  Inaccwcwina 10098  Inacccina 10099  Univcgru 10206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-r1 9187  df-card 9362  df-cf 9364  df-ac 9536  df-wina 10100  df-ina 10101  df-gru 10207
This theorem is referenced by:  grur1  10236
  Copyright terms: Public domain W3C validator