Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutr Structured version   Visualization version   GIF version

Theorem grutr 9600
 Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
grutr (𝑈 ∈ Univ → Tr 𝑈)

Proof of Theorem grutr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 9599 . . 3 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
21ibi 256 . 2 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈)))
32simpld 475 1 (𝑈 ∈ Univ → Tr 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   ∈ wcel 1988  ∀wral 2909  𝒫 cpw 4149  {cpr 4170  ∪ cuni 4427  Tr wtr 4743  ran crn 5105  (class class class)co 6635   ↑𝑚 cmap 7842  Univcgru 9597 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-tr 4744  df-iota 5839  df-fv 5884  df-ov 6638  df-gru 9598 This theorem is referenced by:  gruelss  9601  gruwun  9620  intgru  9621  gruina  9625  grur1  9627  grutsk  9629
 Copyright terms: Public domain W3C validator