MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   GIF version

Theorem gsum2d 19095
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2d (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d.z . . 3 0 = (0g𝐺)
3 gsum2d.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d.a . . 3 (𝜑𝐴𝑉)
5 gsum2d.r . . 3 (𝜑 → Rel 𝐴)
6 gsum2d.d . . 3 (𝜑𝐷𝑊)
7 gsum2d.s . . 3 (𝜑 → dom 𝐴𝐷)
8 gsum2d.f . . 3 (𝜑𝐹:𝐴𝐵)
9 gsum2d.w . . 3 (𝜑𝐹 finSupp 0 )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 19094 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
11 suppssdm 7846 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
1211, 8fssdm 6533 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
13 relss 5659 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
1412, 5, 13sylc 65 . . . . . 6 (𝜑 → Rel (𝐹 supp 0 ))
15 relssdmrn 6124 . . . . . . 7 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )))
16 ssv 3994 . . . . . . . 8 ran (𝐹 supp 0 ) ⊆ V
17 xpss2 5578 . . . . . . . 8 (ran (𝐹 supp 0 ) ⊆ V → (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V))
1816, 17ax-mp 5 . . . . . . 7 (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V)
1915, 18sstrdi 3982 . . . . . 6 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2014, 19syl 17 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2112, 20ssind 4212 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) × V)))
22 df-res 5570 . . . 4 (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) × V))
2321, 22sseqtrrdi 4021 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 )))
241, 2, 3, 4, 8, 23, 9gsumres 19036 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
25 dmss 5774 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2612, 25syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2726, 7sstrd 3980 . . . . 5 (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷)
2827resmptd 5911 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 7175 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
301, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 19093 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3130adantr 483 . . . . 5 ((𝜑𝑗𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3231fmpttd 6882 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷𝐵)
33 vex 3500 . . . . . . . . . . . . . 14 𝑗 ∈ V
34 vex 3500 . . . . . . . . . . . . . 14 𝑘 ∈ V
3533, 34elimasn 5957 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3635biimpi 218 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3736ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
38 eldifn 4107 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
3938ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
4033, 34opeldm 5779 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 ))
4139, 40nsyl 142 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
4237, 41eldifd 3950 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
43 df-ov 7162 . . . . . . . . . . 11 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
44 ssidd 3993 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
452fvexi 6687 . . . . . . . . . . . . 13 0 ∈ V
4645a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
478, 44, 4, 46suppssr 7864 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
4843, 47syl5eq 2871 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
4942, 48syldan 593 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 )
5049anassrs 470 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 )
5150mpteq2dva 5164 . . . . . . 7 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))
5251oveq2d 7175 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )))
53 cmnmnd 18925 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
543, 53syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
55 imaexg 7623 . . . . . . . . 9 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
564, 55syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
572gsumz 18003 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5854, 56, 57syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5958adantr 483 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
6052, 59eqtrd 2859 . . . . 5 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 )
6160, 6suppss2 7867 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 ))
62 funmpt 6396 . . . . . 6 Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))
6362a1i 11 . . . . 5 (𝜑 → Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
649fsuppimpd 8843 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
65 dmfi 8805 . . . . . . 7 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6664, 65syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
6766, 61ssfid 8744 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
686mptexd 6990 . . . . . 6 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
69 isfsupp 8840 . . . . . 6 (((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7068, 46, 69syl2anc 586 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7163, 67, 70mpbir2and 711 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 )
721, 2, 3, 6, 32, 61, 71gsumres 19036 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7329, 72eqtr3d 2861 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7410, 24, 733eqtr3d 2867 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cdif 3936  cin 3938  wss 3939  {csn 4570  cop 4576   class class class wbr 5069  cmpt 5149   × cxp 5556  dom cdm 5558  ran crn 5559  cres 5560  cima 5561  Rel wrel 5563  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159   supp csupp 7833  Fincfn 8512   finSupp cfsupp 8836  Basecbs 16486  0gc0g 16716   Σg cgsu 16717  Mndcmnd 17914  CMndccmn 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911
This theorem is referenced by:  gsum2d2  19097  gsumxp  19099
  Copyright terms: Public domain W3C validator