MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2lem Structured version   Visualization version   GIF version

Theorem gsum2d2lem 18296
Description: Lemma for gsum2d2 18297: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2lem (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
21mpt2fun 6718 . . 3 Fun (𝑗𝐴, 𝑘𝐶𝑋)
32a1i 11 . 2 (𝜑 → Fun (𝑗𝐴, 𝑘𝐶𝑋))
4 gsum2d2.u . . 3 (𝜑𝑈 ∈ Fin)
5 gsum2d2.f . . . . . 6 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
65ralrimivva 2965 . . . . 5 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
71fmpt2x 7184 . . . . 5 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
86, 7sylib 208 . . . 4 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
9 relxp 5190 . . . . . . . 8 Rel ({𝑗} × 𝐶)
109rgenw 2919 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
11 reliun 5202 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1210, 11mpbir 221 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
13 eldifi 3712 . . . . . . 7 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
1413adantl 482 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
15 elrel 5185 . . . . . 6 ((Rel 𝑗𝐴 ({𝑗} × 𝐶) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐶)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
1612, 14, 15sylancr 694 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
17 nfv 1840 . . . . . . 7 𝑗𝜑
18 nfiu1 4518 . . . . . . . . 9 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
19 nfcv 2761 . . . . . . . . 9 𝑗𝑈
2018, 19nfdif 3711 . . . . . . . 8 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
2120nfcri 2755 . . . . . . 7 𝑗 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
2217, 21nfan 1825 . . . . . 6 𝑗(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
23 nfmpt21 6678 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
24 nfcv 2761 . . . . . . . 8 𝑗𝑧
2523, 24nffv 6157 . . . . . . 7 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
2625nfeq1 2774 . . . . . 6 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
27 nfv 1840 . . . . . . 7 𝑘(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
28 nfmpt22 6679 . . . . . . . . 9 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
29 nfcv 2761 . . . . . . . . 9 𝑘𝑧
3028, 29nffv 6157 . . . . . . . 8 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
3130nfeq1 2774 . . . . . . 7 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
32 simprr 795 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 = ⟨𝑗, 𝑘⟩)
3332fveq2d 6154 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩))
34 df-ov 6610 . . . . . . . . . 10 (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩)
35 simprl 793 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3632, 35eqeltrrd 2699 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3736eldifad 3568 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
38 opeliunxp 5133 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
3937, 38sylib 208 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗𝐴𝑘𝐶))
4039simpld 475 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑗𝐴)
4139simprd 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑘𝐶)
4239, 5syldan 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋𝐵)
431ovmpt4g 6739 . . . . . . . . . . 11 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4440, 41, 42, 43syl3anc 1323 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4534, 44syl5eqr 2669 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩) = 𝑋)
46 eldifn 3713 . . . . . . . . . . . . 13 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧𝑈)
4746ad2antrl 763 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑧𝑈)
4832eleq1d 2683 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈))
49 df-br 4616 . . . . . . . . . . . . 13 (𝑗𝑈𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈)
5048, 49syl6bbr 278 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈𝑗𝑈𝑘))
5147, 50mtbid 314 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑗𝑈𝑘)
5239, 51jca 554 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘))
53 gsum2d2.n . . . . . . . . . 10 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
5452, 53syldan 487 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋 = 0 )
5533, 45, 543eqtrd 2659 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
5655expr 642 . . . . . . 7 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5727, 31, 56exlimd 2085 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5822, 26, 57exlimd 2085 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5916, 58mpd 15 . . . 4 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
608, 59suppss 7273 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈)
61 ssfi 8127 . . 3 ((𝑈 ∈ Fin ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈) → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
624, 60, 61syl2anc 692 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
63 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
64 gsum2d2.r . . . . 5 ((𝜑𝑗𝐴) → 𝐶𝑊)
6564ralrimiva 2960 . . . 4 (𝜑 → ∀𝑗𝐴 𝐶𝑊)
661mpt2exxg 7192 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐶𝑊) → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
6763, 65, 66syl2anc 692 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
68 gsum2d2.z . . . . 5 0 = (0g𝐺)
69 fvex 6160 . . . . 5 (0g𝐺) ∈ V
7068, 69eqeltri 2694 . . . 4 0 ∈ V
7170a1i 11 . . 3 (𝜑0 ∈ V)
72 isfsupp 8226 . . 3 (((𝑗𝐴, 𝑘𝐶𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
7367, 71, 72syl2anc 692 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
743, 62, 73mpbir2and 956 1 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  Vcvv 3186  cdif 3553  wss 3556  {csn 4150  cop 4156   ciun 4487   class class class wbr 4615   × cxp 5074  Rel wrel 5081  Fun wfun 5843  wf 5845  cfv 5849  (class class class)co 6607  cmpt2 6609   supp csupp 7243  Fincfn 7902   finSupp cfsupp 8222  Basecbs 15784  0gc0g 16024  CMndccmn 18117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-er 7690  df-en 7903  df-fin 7906  df-fsupp 8223
This theorem is referenced by:  gsum2d2  18297  gsumcom2  18298
  Copyright terms: Public domain W3C validator