![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumbagdiag | Structured version Visualization version GIF version |
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 14708 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrbagconf1o.1 | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} |
gsumbagdiag.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
gsumbagdiag.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
gsumbagdiag.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumbagdiag.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumbagdiag.x | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumbagdiag | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑘)} ↦ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumbagdiag.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2760 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumbagdiag.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | psrbagconf1o.1 | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} | |
5 | gsumbagdiag.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | gsumbagdiag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
7 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
8 | 7 | psrbaglefi 19574 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} ∈ Fin) |
9 | 5, 6, 8 | syl2anc 696 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} ∈ Fin) |
10 | 4, 9 | syl5eqel 2843 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
11 | ovex 6841 | . . . 4 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
12 | 7, 11 | rab2ex 4967 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)} ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)} ∈ V) |
14 | gsumbagdiag.x | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → 𝑋 ∈ 𝐵) | |
15 | xpfi 8396 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) | |
16 | 10, 10, 15 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
17 | simprl 811 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → 𝑗 ∈ 𝑆) | |
18 | 7, 4, 5, 6 | gsumbagdiaglem 19577 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑘)})) |
19 | 18 | simpld 477 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → 𝑘 ∈ 𝑆) |
20 | brxp 5304 | . . . . 5 ⊢ (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆)) | |
21 | 17, 19, 20 | sylanbrc 701 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘) |
22 | 21 | pm2.24d 147 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘 → 𝑋 = (0g‘𝐺))) |
23 | 22 | impr 650 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g‘𝐺)) |
24 | 7, 4, 5, 6 | gsumbagdiaglem 19577 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑘)})) → (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)})) |
25 | 18, 24 | impbida 913 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)}) ↔ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑘)}))) |
26 | 1, 2, 3, 10, 13, 14, 16, 23, 10, 25 | gsumcom2 18574 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝐹 ∘𝑓 − 𝑘)} ↦ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 class class class wbr 4804 × cxp 5264 ◡ccnv 5265 “ cima 5269 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 ∘𝑓 cof 7060 ∘𝑟 cofr 7061 ↑𝑚 cmap 8023 Fincfn 8121 ≤ cle 10267 − cmin 10458 ℕcn 11212 ℕ0cn0 11484 Basecbs 16059 0gc0g 16302 Σg cgsu 16303 CMndccmn 18393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-0g 16304 df-gsum 16305 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-cntz 17950 df-cmn 18395 |
This theorem is referenced by: psrass1lem 19579 |
Copyright terms: Public domain | W3C validator |