MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiag Structured version   Visualization version   GIF version

Theorem gsumbagdiag 19578
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 14708 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiag (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑥,𝑦   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiag
StepHypRef Expression
1 gsumbagdiag.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2760 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiag.g . 2 (𝜑𝐺 ∈ CMnd)
4 psrbagconf1o.1 . . 3 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
5 gsumbagdiag.i . . . 4 (𝜑𝐼𝑉)
6 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
7 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 19574 . . . 4 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
95, 6, 8syl2anc 696 . . 3 (𝜑 → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
104, 9syl5eqel 2843 . 2 (𝜑𝑆 ∈ Fin)
11 ovex 6841 . . . 4 (ℕ0𝑚 𝐼) ∈ V
127, 11rab2ex 4967 . . 3 {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V
1312a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V)
14 gsumbagdiag.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
15 xpfi 8396 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
1610, 10, 15syl2anc 696 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
17 simprl 811 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗𝑆)
187, 4, 5, 6gsumbagdiaglem 19577 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑘)}))
1918simpld 477 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑘𝑆)
20 brxp 5304 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2117, 19, 20sylanbrc 701 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2221pm2.24d 147 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2322impr 650 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
247, 4, 5, 6gsumbagdiaglem 19577 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}))
2518, 24impbida 913 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑘)})))
261, 2, 3, 10, 13, 14, 16, 23, 10, 25gsumcom2 18574 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑘)} ↦ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340   class class class wbr 4804   × cxp 5264  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑓 cof 7060  𝑟 cofr 7061  𝑚 cmap 8023  Fincfn 8121  cle 10267  cmin 10458  cn 11212  0cn0 11484  Basecbs 16059  0gc0g 16302   Σg cgsu 16303  CMndccmn 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-0g 16304  df-gsum 16305  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-cntz 17950  df-cmn 18395
This theorem is referenced by:  psrass1lem  19579
  Copyright terms: Public domain W3C validator