MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiaglem Structured version   Visualization version   GIF version

Theorem gsumbagdiaglem 20157
Description: Lemma for gsumbagdiag 20158. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
Assertion
Ref Expression
gsumbagdiaglem ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem gsumbagdiaglem
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 771 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})
2 breq1 5071 . . . . . 6 (𝑥 = 𝑌 → (𝑥r ≤ (𝐹f𝑋) ↔ 𝑌r ≤ (𝐹f𝑋)))
32elrab 3682 . . . . 5 (𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)} ↔ (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
41, 3sylib 220 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
54simpld 497 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝐷)
64simprd 498 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r ≤ (𝐹f𝑋))
7 gsumbagdiag.i . . . . . . 7 (𝜑𝐼𝑉)
87adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐼𝑉)
9 gsumbagdiag.f . . . . . . 7 (𝜑𝐹𝐷)
109adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹𝐷)
11 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝑆)
12 breq1 5071 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
13 psrbagconf1o.1 . . . . . . . . . 10 𝑆 = {𝑦𝐷𝑦r𝐹}
1412, 13elrab2 3685 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
1511, 14sylib 220 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋𝐷𝑋r𝐹))
1615simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝐷)
17 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1817psrbagf 20147 . . . . . . 7 ((𝐼𝑉𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
198, 16, 18syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋:𝐼⟶ℕ0)
2015simprd 498 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r𝐹)
2117psrbagcon 20153 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹)) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
228, 10, 19, 20, 21syl13anc 1368 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
2322simprd 498 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∘r𝐹)
2417psrbagf 20147 . . . . . 6 ((𝐼𝑉𝑌𝐷) → 𝑌:𝐼⟶ℕ0)
258, 5, 24syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌:𝐼⟶ℕ0)
2622simpld 497 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∈ 𝐷)
2717psrbagf 20147 . . . . . 6 ((𝐼𝑉 ∧ (𝐹f𝑋) ∈ 𝐷) → (𝐹f𝑋):𝐼⟶ℕ0)
288, 26, 27syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋):𝐼⟶ℕ0)
2917psrbagf 20147 . . . . . 6 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
308, 10, 29syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹:𝐼⟶ℕ0)
31 nn0re 11909 . . . . . . 7 (𝑢 ∈ ℕ0𝑢 ∈ ℝ)
32 nn0re 11909 . . . . . . 7 (𝑣 ∈ ℕ0𝑣 ∈ ℝ)
33 nn0re 11909 . . . . . . 7 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
34 letr 10736 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3531, 32, 33, 34syl3an 1156 . . . . . 6 ((𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3635adantl 484 . . . . 5 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ (𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0)) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
378, 25, 28, 30, 36caoftrn 7446 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝑌r ≤ (𝐹f𝑋) ∧ (𝐹f𝑋) ∘r𝐹) → 𝑌r𝐹))
386, 23, 37mp2and 697 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r𝐹)
39 breq1 5071 . . . 4 (𝑦 = 𝑌 → (𝑦r𝐹𝑌r𝐹))
4039, 13elrab2 3685 . . 3 (𝑌𝑆 ↔ (𝑌𝐷𝑌r𝐹))
415, 38, 40sylanbrc 585 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝑆)
42 breq1 5071 . . 3 (𝑥 = 𝑋 → (𝑥r ≤ (𝐹f𝑌) ↔ 𝑋r ≤ (𝐹f𝑌)))
4319ffvelrnda 6853 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
4425ffvelrnda 6853 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
4530ffvelrnda 6853 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
46 nn0re 11909 . . . . . . . 8 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℝ)
47 nn0re 11909 . . . . . . . 8 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℝ)
48 nn0re 11909 . . . . . . . 8 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℝ)
49 leaddsub2 11119 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
50 leaddsub 11118 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5149, 50bitr3d 283 . . . . . . . 8 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5246, 47, 48, 51syl3an 1156 . . . . . . 7 (((𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝐹𝑧) ∈ ℕ0) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5343, 44, 45, 52syl3anc 1367 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5453ralbidva 3198 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
55 ovexd 7193 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑋𝑧)) ∈ V)
5625feqmptd 6735 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
5730ffnd 6517 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹 Fn 𝐼)
5819ffnd 6517 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 Fn 𝐼)
59 inidm 4197 . . . . . . 7 (𝐼𝐼) = 𝐼
60 eqidd 2824 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) = (𝐹𝑧))
61 eqidd 2824 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) = (𝑋𝑧))
6257, 58, 8, 8, 59, 60, 61offval 7418 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑋𝑧))))
638, 44, 55, 56, 62ofrfval2 7429 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ ∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
64 ovexd 7193 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑌𝑧)) ∈ V)
6519feqmptd 6735 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
6625ffnd 6517 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 Fn 𝐼)
67 eqidd 2824 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) = (𝑌𝑧))
6857, 66, 8, 8, 59, 60, 67offval 7418 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑌) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑌𝑧))))
698, 43, 64, 65, 68ofrfval2 7429 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋r ≤ (𝐹f𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
7054, 63, 693bitr4d 313 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ 𝑋r ≤ (𝐹f𝑌)))
716, 70mpbid 234 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r ≤ (𝐹f𝑌))
7242, 16, 71elrabd 3684 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)})
7341, 72jca 514 1 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496   class class class wbr 5068  ccnv 5556  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  r cofr 7410  m cmap 8408  Fincfn 8511  cr 10538   + caddc 10542  cle 10678  cmin 10872  cn 11640  0cn0 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901
This theorem is referenced by:  gsumbagdiag  20158  psrass1lem  20159
  Copyright terms: Public domain W3C validator