Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   GIF version

Theorem gsumesum 29920
Description: Relate a group sum on (ℝ*𝑠s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0 𝑘𝜑
gsumesum.1 (𝜑𝐴 ∈ Fin)
gsumesum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
gsumesum (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem gsumesum
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3 𝑘𝜑
2 nfcv 2761 . . 3 𝑘𝐴
3 gsumesum.1 . . 3 (𝜑𝐴 ∈ Fin)
4 gsumesum.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 eqidd 2622 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
61, 2, 3, 4, 5esumval 29907 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
7 xrltso 11925 . . . 4 < Or ℝ*
87a1i 11 . . 3 (𝜑 → < Or ℝ*)
9 iccssxr 12205 . . . 4 (0[,]+∞) ⊆ ℝ*
10 xrge0base 29488 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 19716 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
134ex 450 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
141, 13ralrimi 2952 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1510, 12, 3, 14gsummptcl 18294 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ (0[,]+∞))
169, 15sseldi 3585 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
17 pwidg 4149 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
183, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝐴)
1918, 3elind 3781 . . . . 5 (𝜑𝐴 ∈ (𝒫 𝐴 ∩ Fin))
20 eqidd 2622 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
21 mpteq1 4702 . . . . . . . 8 (𝑥 = 𝐴 → (𝑘𝑥𝐵) = (𝑘𝐴𝐵))
2221oveq2d 6626 . . . . . . 7 (𝑥 = 𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
2322eqeq2d 2631 . . . . . 6 (𝑥 = 𝐴 → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
2423rspcev 3298 . . . . 5 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2519, 20, 24syl2anc 692 . . . 4 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
26 eqid 2621 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
27 ovex 6638 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ V
2826, 27elrnmpti 5341 . . . 4 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2925, 28sylibr 224 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
30 simpr 477 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
31 mpteq1 4702 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
3231oveq2d 6626 . . . . . . . 8 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3332cbvmptv 4715 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
34 ovex 6638 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
3533, 34elrnmpti 5341 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3630, 35sylib 208 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3711a1i 11 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
38 inss2 3817 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
39 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
4038, 39sseldi 3585 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
41 nfv 1840 . . . . . . . . . . . . 13 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
421, 41nfan 1825 . . . . . . . . . . . 12 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
43 simpll 789 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
44 inss1 3816 . . . . . . . . . . . . . . . . . 18 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
4544sseli 3583 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
4645elpwid 4146 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
4746ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
48 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
4947, 48sseldd 3588 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
5043, 49, 4syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
5150ex 450 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑎𝐵 ∈ (0[,]+∞)))
5242, 51ralrimi 2952 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑎 𝐵 ∈ (0[,]+∞))
5310, 37, 40, 52gsummptcl 18294 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ (0[,]+∞))
549, 53sseldi 3585 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ*)
55 diffi 8143 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝑎) ∈ Fin)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑎) ∈ Fin)
5756adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴𝑎) ∈ Fin)
58 simpll 789 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝜑)
59 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘 ∈ (𝐴𝑎))
6059eldifad 3571 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘𝐴)
6158, 60, 4syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝐵 ∈ (0[,]+∞))
6261ex 450 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴𝑎) → 𝐵 ∈ (0[,]+∞)))
6342, 62ralrimi 2952 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴𝑎)𝐵 ∈ (0[,]+∞))
6410, 37, 57, 63gsummptcl 18294 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞))
659, 64sseldi 3585 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*)
66 elxrge0 12230 . . . . . . . . . . 11 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
6766simprbi 480 . . . . . . . . . 10 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
6864, 67syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
69 xraddge02 29383 . . . . . . . . . 10 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) → (0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))))
7069imp 445 . . . . . . . . 9 (((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7154, 65, 68, 70syl21anc 1322 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7271adantlr 750 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
73 simpll 789 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑)
7446adantl 482 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝐴)
75 xrge00 29489 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
76 xrge0plusg 29490 . . . . . . . . . 10 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
7711a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
783adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 ∈ Fin)
79 eqid 2621 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
801, 4, 79fmptdf 6348 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8180adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8279fnmpt 5982 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
8314, 82syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
84 c0ex 9985 . . . . . . . . . . . . 13 0 ∈ V
8584a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ V)
8683, 3, 85fndmfifsupp 8239 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
8786adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵) finSupp 0)
88 disjdif 4017 . . . . . . . . . . 11 (𝑎 ∩ (𝐴𝑎)) = ∅
8988a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 ∩ (𝐴𝑎)) = ∅)
90 undif 4026 . . . . . . . . . . . . 13 (𝑎𝐴 ↔ (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9190biimpi 206 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9291eqcomd 2627 . . . . . . . . . . 11 (𝑎𝐴𝐴 = (𝑎 ∪ (𝐴𝑎)))
9392adantl 482 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 = (𝑎 ∪ (𝐴𝑎)))
9410, 75, 76, 77, 78, 81, 87, 89, 93gsumsplit 18256 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))))
95 resmpt 5413 . . . . . . . . . . . 12 (𝑎𝐴 → ((𝑘𝐴𝐵) ↾ 𝑎) = (𝑘𝑎𝐵))
9695oveq2d 6626 . . . . . . . . . . 11 (𝑎𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
9796adantl 482 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
98 difss 3720 . . . . . . . . . . . . 13 (𝐴𝑎) ⊆ 𝐴
99 resmpt 5413 . . . . . . . . . . . . 13 ((𝐴𝑎) ⊆ 𝐴 → ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
10098, 99ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)
101100oveq2i 6621 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
10397, 102oveq12d 6628 . . . . . . . . 9 ((𝜑𝑎𝐴) → (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10494, 103eqtrd 2655 . . . . . . . 8 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10573, 74, 104syl2anc 692 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10672, 105breqtrrd 4646 . . . . . 6 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
107106ralrimiva 2961 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
108 r19.29r 3067 . . . . . 6 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
109 breq1 4621 . . . . . . . 8 (𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
110109biimpar 502 . . . . . . 7 ((𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
111110rexlimivw 3023 . . . . . 6 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
112108, 111syl 17 . . . . 5 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11336, 107, 112syl2anc 692 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11416adantr 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
11511a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
116 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
11738, 116sseldi 3585 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
118 nfv 1840 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
1191, 118nfan 1825 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
120 simpll 789 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
12144sseli 3583 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
122121ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
123122elpwid 4146 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
124 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
125123, 124sseldd 3588 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
126120, 125, 4syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
127126ex 450 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
128119, 127ralrimi 2952 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
12910, 115, 117, 128gsummptcl 18294 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
1309, 129sseldi 3585 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
131130ralrimiva 2961 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
13226rnmptss 6353 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
133131, 132syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
134133sselda 3587 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ℝ*)
135 xrltnle 10056 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
136135con2bid 344 . . . . 5 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
137114, 134, 136syl2anc 692 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
138113, 137mpbid 222 . . 3 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦)
1398, 16, 29, 138supmax 8324 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
1406, 139eqtr2d 2656 1 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wnf 1705  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135   class class class wbr 4618  cmpt 4678   Or wor 4999  ran crn 5080  cres 5081   Fn wfn 5847  wf 5848  (class class class)co 6610  Fincfn 7906   finSupp cfsupp 8226  supcsup 8297  0cc0 9887  +∞cpnf 10022  *cxr 10024   < clt 10025  cle 10026   +𝑒 cxad 11895  [,]cicc 12127  s cress 15789   Σg cgsu 16029  *𝑠cxrs 16088  CMndccmn 18121  Σ*cesum 29888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-xadd 11898  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-hash 13065  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-tset 15888  df-ple 15889  df-ds 15892  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-ordt 16089  df-xrs 16090  df-mre 16174  df-mrc 16175  df-acs 16177  df-ps 17128  df-tsr 17129  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-cntz 17678  df-cmn 18123  df-fbas 19671  df-fg 19672  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-ntr 20743  df-nei 20821  df-cn 20950  df-haus 21038  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-tsms 21849  df-esum 29889
This theorem is referenced by:  esumlub  29921
  Copyright terms: Public domain W3C validator