MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumf1o Structured version   Visualization version   GIF version

Theorem gsumf1o 18238
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumcl.b 𝐵 = (Base‘𝐺)
gsumcl.z 0 = (0g𝐺)
gsumcl.g (𝜑𝐺 ∈ CMnd)
gsumcl.a (𝜑𝐴𝑉)
gsumcl.f (𝜑𝐹:𝐴𝐵)
gsumcl.w (𝜑𝐹 finSupp 0 )
gsumf1o.h (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
gsumf1o (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))

Proof of Theorem gsumf1o
StepHypRef Expression
1 gsumcl.b . 2 𝐵 = (Base‘𝐺)
2 gsumcl.z . 2 0 = (0g𝐺)
3 eqid 2621 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
4 gsumcl.g . . 3 (𝜑𝐺 ∈ CMnd)
5 cmnmnd 18129 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Mnd)
7 gsumcl.a . 2 (𝜑𝐴𝑉)
8 gsumcl.f . 2 (𝜑𝐹:𝐴𝐵)
91, 3, 4, 8cntzcmnf 18169 . 2 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
10 gsumcl.w . 2 (𝜑𝐹 finSupp 0 )
11 gsumf1o.h . 2 (𝜑𝐻:𝐶1-1-onto𝐴)
121, 2, 3, 6, 7, 8, 9, 10, 11gsumzf1o 18234 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   class class class wbr 4613  ccom 5078  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604   finSupp cfsupp 8219  Basecbs 15781  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Cntzccntz 17669  CMndccmn 18114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-cntz 17671  df-cmn 18116
This theorem is referenced by:  gsummptshft  18257  gsummptf1o  18283  gsummptfif1o  18288  gsum2dlem2  18291  gsumcom2  18295  psrass1lem  19296  psrcom  19328  psropprmul  19527  coe1mul2  19558  ply1coe  19585  tsmsf1o  21858  lgseisenlem3  25002  gsummpt2d  29563
  Copyright terms: Public domain W3C validator