MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumfsum Structured version   Visualization version   GIF version

Theorem gsumfsum 19794
Description: Relate a group sum on fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsumfsum.1 (𝜑𝐴 ∈ Fin)
gsumfsum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfsum (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfsum
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4728 . . . . . . 7 (𝐴 = ∅ → (𝑘𝐴𝐵) = (𝑘 ∈ ∅ ↦ 𝐵))
2 mpt0 6008 . . . . . . 7 (𝑘 ∈ ∅ ↦ 𝐵) = ∅
31, 2syl6eq 2670 . . . . . 6 (𝐴 = ∅ → (𝑘𝐴𝐵) = ∅)
43oveq2d 6651 . . . . 5 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg ∅))
5 cnfld0 19751 . . . . . . 7 0 = (0g‘ℂfld)
65gsum0 17259 . . . . . 6 (ℂfld Σg ∅) = 0
7 sum0 14433 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
86, 7eqtr4i 2645 . . . . 5 (ℂfld Σg ∅) = Σ𝑘 ∈ ∅ 𝐵
94, 8syl6eq 2670 . . . 4 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘 ∈ ∅ 𝐵)
10 sumeq1 14400 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
119, 10eqtr4d 2657 . . 3 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
13 cnfldbas 19731 . . . . . . 7 ℂ = (Base‘ℂfld)
14 cnfldadd 19732 . . . . . . 7 + = (+g‘ℂfld)
15 eqid 2620 . . . . . . 7 (Cntz‘ℂfld) = (Cntz‘ℂfld)
16 cnring 19749 . . . . . . . 8 fld ∈ Ring
17 ringmnd 18537 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1816, 17mp1i 13 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ℂfld ∈ Mnd)
19 gsumfsum.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2019adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝐴 ∈ Fin)
21 gsumfsum.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
22 eqid 2620 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2321, 22fmptd 6371 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
25 ringcmn 18562 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2616, 25mp1i 13 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ℂfld ∈ CMnd)
2713, 15, 26, 24cntzcmnf 18229 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝐵) ⊆ ((Cntz‘ℂfld)‘ran (𝑘𝐴𝐵)))
28 simprl 793 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
29 simprr 795 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
30 f1of1 6123 . . . . . . . 8 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))–1-1𝐴)
3129, 30syl 17 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1𝐴)
32 suppssdm 7293 . . . . . . . . 9 ((𝑘𝐴𝐵) supp 0) ⊆ dom (𝑘𝐴𝐵)
33 fdm 6038 . . . . . . . . . 10 ((𝑘𝐴𝐵):𝐴⟶ℂ → dom (𝑘𝐴𝐵) = 𝐴)
3424, 33syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → dom (𝑘𝐴𝐵) = 𝐴)
3532, 34syl5sseq 3645 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) supp 0) ⊆ 𝐴)
36 f1ofo 6131 . . . . . . . . 9 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))–onto𝐴)
37 forn 6105 . . . . . . . . 9 (𝑓:(1...(#‘𝐴))–onto𝐴 → ran 𝑓 = 𝐴)
3829, 36, 373syl 18 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ran 𝑓 = 𝐴)
3935, 38sseqtr4d 3634 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) supp 0) ⊆ ran 𝑓)
40 eqid 2620 . . . . . . 7 (((𝑘𝐴𝐵) ∘ 𝑓) supp 0) = (((𝑘𝐴𝐵) ∘ 𝑓) supp 0)
4113, 5, 14, 15, 18, 20, 24, 27, 28, 31, 39, 40gsumval3 18289 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (ℂfld Σg (𝑘𝐴𝐵)) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
42 sumfc 14421 . . . . . . 7 Σ𝑥𝐴 ((𝑘𝐴𝐵)‘𝑥) = Σ𝑘𝐴 𝐵
43 fveq2 6178 . . . . . . . 8 (𝑥 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4424ffvelrnda 6345 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑥𝐴) → ((𝑘𝐴𝐵)‘𝑥) ∈ ℂ)
45 f1of 6124 . . . . . . . . . 10 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
4629, 45syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴)
47 fvco3 6262 . . . . . . . . 9 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4846, 47sylan 488 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4943, 28, 29, 44, 48fsum 14432 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑥𝐴 ((𝑘𝐴𝐵)‘𝑥) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
5042, 49syl5eqr 2668 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
5141, 50eqtr4d 2657 . . . . 5 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
5251expr 642 . . . 4 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
5352exlimdv 1859 . . 3 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
5453expimpd 628 . 2 (𝜑 → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
55 fz1f1o 14422 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
5619, 55syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
5712, 54, 56mpjaod 396 1 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wex 1702  wcel 1988  c0 3907  cmpt 4720  dom cdm 5104  ran crn 5105  ccom 5108  wf 5872  1-1wf1 5873  ontowfo 5874  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635   supp csupp 7280  Fincfn 7940  cc 9919  0cc0 9921  1c1 9922   + caddc 9924  cn 11005  ...cfz 12311  seqcseq 12784  #chash 13100  Σcsu 14397   Σg cgsu 16082  Mndcmnd 17275  Cntzccntz 17729  CMndccmn 18174  Ringcrg 18528  fldccnfld 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-0g 16083  df-gsum 16084  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-cnfld 19728
This theorem is referenced by:  regsumfsum  19795  regsumsupp  19949  plypf1  23949  taylpfval  24100  jensen  24696  amgmlem  24697  lgseisenlem4  25084  esumpfinval  30111  esumpfinvalf  30112  esumpcvgval  30114  esumcvg  30122  sge0tsms  40360  aacllem  42312  amgmwlem  42313  amgmlemALT  42314
  Copyright terms: Public domain W3C validator