Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumle Structured version   Visualization version   GIF version

Theorem gsumle 28917
Description: A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
gsumle.b 𝐵 = (Base‘𝑀)
gsumle.l = (le‘𝑀)
gsumle.m (𝜑𝑀 ∈ oMnd)
gsumle.n (𝜑𝑀 ∈ CMnd)
gsumle.a (𝜑𝐴 ∈ Fin)
gsumle.f (𝜑𝐹:𝐴𝐵)
gsumle.g (𝜑𝐺:𝐴𝐵)
gsumle.c (𝜑𝐹𝑟 𝐺)
Assertion
Ref Expression
gsumle (𝜑 → (𝑀 Σg 𝐹) (𝑀 Σg 𝐺))

Proof of Theorem gsumle
Dummy variables 𝑒 𝑎 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumle.a . . 3 (𝜑𝐴 ∈ Fin)
2 ssid 3491 . . . 4 𝐴𝐴
3 sseq1 3493 . . . . . . . 8 (𝑎 = ∅ → (𝑎𝐴 ↔ ∅ ⊆ 𝐴))
43anbi2d 735 . . . . . . 7 (𝑎 = ∅ → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
5 reseq2 5203 . . . . . . . . 9 (𝑎 = ∅ → (𝐹𝑎) = (𝐹 ↾ ∅))
65oveq2d 6441 . . . . . . . 8 (𝑎 = ∅ → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹 ↾ ∅)))
7 reseq2 5203 . . . . . . . . 9 (𝑎 = ∅ → (𝐺𝑎) = (𝐺 ↾ ∅))
87oveq2d 6441 . . . . . . . 8 (𝑎 = ∅ → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺 ↾ ∅)))
96, 8breq12d 4494 . . . . . . 7 (𝑎 = ∅ → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅))))
104, 9imbi12d 332 . . . . . 6 (𝑎 = ∅ → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))))
11 sseq1 3493 . . . . . . . 8 (𝑎 = 𝑒 → (𝑎𝐴𝑒𝐴))
1211anbi2d 735 . . . . . . 7 (𝑎 = 𝑒 → ((𝜑𝑎𝐴) ↔ (𝜑𝑒𝐴)))
13 reseq2 5203 . . . . . . . . 9 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
1413oveq2d 6441 . . . . . . . 8 (𝑎 = 𝑒 → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹𝑒)))
15 reseq2 5203 . . . . . . . . 9 (𝑎 = 𝑒 → (𝐺𝑎) = (𝐺𝑒))
1615oveq2d 6441 . . . . . . . 8 (𝑎 = 𝑒 → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺𝑒)))
1714, 16breq12d 4494 . . . . . . 7 (𝑎 = 𝑒 → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))))
1812, 17imbi12d 332 . . . . . 6 (𝑎 = 𝑒 → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))))
19 sseq1 3493 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑎𝐴 ↔ (𝑒 ∪ {𝑦}) ⊆ 𝐴))
2019anbi2d 735 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑦}) → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)))
21 reseq2 5203 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑦}) → (𝐹𝑎) = (𝐹 ↾ (𝑒 ∪ {𝑦})))
2221oveq2d 6441 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))))
23 reseq2 5203 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑦}) → (𝐺𝑎) = (𝐺 ↾ (𝑒 ∪ {𝑦})))
2423oveq2d 6441 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
2522, 24breq12d 4494 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑦}) → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))
2620, 25imbi12d 332 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑦}) → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
27 sseq1 3493 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝐴𝐴𝐴))
2827anbi2d 735 . . . . . . 7 (𝑎 = 𝐴 → ((𝜑𝑎𝐴) ↔ (𝜑𝐴𝐴)))
29 reseq2 5203 . . . . . . . . 9 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
3029oveq2d 6441 . . . . . . . 8 (𝑎 = 𝐴 → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹𝐴)))
31 reseq2 5203 . . . . . . . . 9 (𝑎 = 𝐴 → (𝐺𝑎) = (𝐺𝐴))
3231oveq2d 6441 . . . . . . . 8 (𝑎 = 𝐴 → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺𝐴)))
3330, 32breq12d 4494 . . . . . . 7 (𝑎 = 𝐴 → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴))))
3428, 33imbi12d 332 . . . . . 6 (𝑎 = 𝐴 → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑𝐴𝐴) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))))
35 gsumle.m . . . . . . . . . 10 (𝜑𝑀 ∈ oMnd)
36 omndtos 28843 . . . . . . . . . 10 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
37 tospos 28795 . . . . . . . . . 10 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
3835, 36, 373syl 18 . . . . . . . . 9 (𝜑𝑀 ∈ Poset)
39 res0 5212 . . . . . . . . . . . 12 (𝐹 ↾ ∅) = ∅
4039oveq2i 6436 . . . . . . . . . . 11 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
41 eqid 2514 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
4241gsum0 16997 . . . . . . . . . . 11 (𝑀 Σg ∅) = (0g𝑀)
4340, 42eqtri 2536 . . . . . . . . . 10 (𝑀 Σg (𝐹 ↾ ∅)) = (0g𝑀)
44 omndmnd 28842 . . . . . . . . . . 11 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
45 gsumle.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
4645, 41mndidcl 17027 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
4735, 44, 463syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑀) ∈ 𝐵)
4843, 47syl5eqel 2596 . . . . . . . . 9 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵)
49 gsumle.l . . . . . . . . . 10 = (le‘𝑀)
5045, 49posref 16670 . . . . . . . . 9 ((𝑀 ∈ Poset ∧ (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐹 ↾ ∅)))
5138, 48, 50syl2anc 690 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐹 ↾ ∅)))
52 res0 5212 . . . . . . . . . 10 (𝐺 ↾ ∅) = ∅
5339, 52eqtr4i 2539 . . . . . . . . 9 (𝐹 ↾ ∅) = (𝐺 ↾ ∅)
5453oveq2i 6436 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg (𝐺 ↾ ∅))
5551, 54syl6breq 4522 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))
5655adantr 479 . . . . . 6 ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))
57 ssun1 3642 . . . . . . . . . 10 𝑒 ⊆ (𝑒 ∪ {𝑦})
58 sstr2 3479 . . . . . . . . . 10 (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝑒 ∪ {𝑦}) ⊆ 𝐴𝑒𝐴))
5957, 58ax-mp 5 . . . . . . . . 9 ((𝑒 ∪ {𝑦}) ⊆ 𝐴𝑒𝐴)
6059anim2i 590 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝜑𝑒𝐴))
6160imim1i 60 . . . . . . 7 (((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))))
62 simplr 787 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴))
63 simpllr 794 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ¬ 𝑦𝑒)
64 simpr 475 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))
65 eqid 2514 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
6635ad3antrrr 761 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑀 ∈ oMnd)
67 gsumle.g . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴𝐵)
6867ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐺:𝐴𝐵)
69 simplr 787 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
70 ssun2 3643 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (𝑒 ∪ {𝑦})
71 vex 3080 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
7271snss 4162 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝑒 ∪ {𝑦}) ↔ {𝑦} ⊆ (𝑒 ∪ {𝑦}))
7370, 72mpbir 219 . . . . . . . . . . . . . . . 16 𝑦 ∈ (𝑒 ∪ {𝑦})
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦 ∈ (𝑒 ∪ {𝑦}))
7569, 74sseldd 3473 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦𝐴)
7668, 75ffvelrnd 6151 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑦) ∈ 𝐵)
7776adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐺𝑦) ∈ 𝐵)
78 gsumle.n . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ CMnd)
7978ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑀 ∈ CMnd)
80 vex 3080 . . . . . . . . . . . . . . 15 𝑒 ∈ V
8180a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒 ∈ V)
82 gsumle.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
8382ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹:𝐴𝐵)
8457, 69syl5ss 3483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒𝐴)
8583, 84fssresd 5867 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒):𝑒𝐵)
861ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐴 ∈ Fin)
87 fvex 5996 . . . . . . . . . . . . . . . . 17 (0g𝑀) ∈ V
8887a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (0g𝑀) ∈ V)
8983, 86, 88fdmfifsupp 8042 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹 finSupp (0g𝑀))
9089, 88fsuppres 8057 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒) finSupp (0g𝑀))
9145, 41, 79, 81, 85, 90gsumcl 18050 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹𝑒)) ∈ 𝐵)
9291adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) ∈ 𝐵)
9383, 75ffvelrnd 6151 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑦) ∈ 𝐵)
9493adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐹𝑦) ∈ 𝐵)
9568, 84fssresd 5867 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑒):𝑒𝐵)
96 ssfi 7939 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Fin ∧ 𝑒𝐴) → 𝑒 ∈ Fin)
9786, 84, 96syl2anc 690 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒 ∈ Fin)
9895, 97, 88fdmfifsupp 8042 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑒) finSupp (0g𝑀))
9945, 41, 79, 81, 95, 98gsumcl 18050 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺𝑒)) ∈ 𝐵)
10099adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐺𝑒)) ∈ 𝐵)
101 simpr 475 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))
102 simpll 785 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝜑)
103 gsumle.c . . . . . . . . . . . . . . 15 (𝜑𝐹𝑟 𝐺)
104103ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹𝑟 𝐺)
105 ffn 5843 . . . . . . . . . . . . . . . 16 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
10682, 105syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
107 ffn 5843 . . . . . . . . . . . . . . . 16 (𝐺:𝐴𝐵𝐺 Fn 𝐴)
10867, 107syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 Fn 𝐴)
109 inidm 3687 . . . . . . . . . . . . . . 15 (𝐴𝐴) = 𝐴
110 eqidd 2515 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
111 eqidd 2515 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
112106, 108, 1, 1, 109, 110, 111ofrval 6679 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝐺𝑦𝐴) → (𝐹𝑦) (𝐺𝑦))
113102, 104, 75, 112syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑦) (𝐺𝑦))
114113adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐹𝑦) (𝐺𝑦))
11579adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑀 ∈ CMnd)
11645, 49, 65, 66, 77, 92, 94, 100, 101, 114, 115omndadd2d 28846 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
11797adantr 479 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑒 ∈ Fin)
11882ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝐹:𝐴𝐵)
119 simplr 787 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
120 elun1 3646 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑒𝑧 ∈ (𝑒 ∪ {𝑦}))
121120adantl 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝑧 ∈ (𝑒 ∪ {𝑦}))
122119, 121sseldd 3473 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝑧𝐴)
123118, 122ffvelrnd 6151 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → (𝐹𝑧) ∈ 𝐵)
124123ex 448 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑧𝑒 → (𝐹𝑧) ∈ 𝐵))
125124ad2antrr 757 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑧𝑒 → (𝐹𝑧) ∈ 𝐵))
126125imp 443 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) ∧ 𝑧𝑒) → (𝐹𝑧) ∈ 𝐵)
12771a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑦 ∈ V)
128 simplr 787 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ¬ 𝑦𝑒)
129 fveq2 5986 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
13045, 65, 115, 117, 126, 127, 128, 94, 129gsumunsn 18093 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦)))
13183, 69feqresmpt 6043 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧)))
132131oveq2d 6441 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))))
13383, 84feqresmpt 6043 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒) = (𝑧𝑒 ↦ (𝐹𝑧)))
134133oveq2d 6441 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹𝑒)) = (𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧))))
135134oveq1d 6440 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦)))
136132, 135eqeq12d 2529 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦))))
137136adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦))))
138130, 137mpbird 245 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)))
13967adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝐺:𝐴𝐵)
140139ad2antrr 757 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → 𝐺:𝐴𝐵)
141122adantlr 746 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → 𝑧𝐴)
142140, 141ffvelrnd 6151 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → (𝐺𝑧) ∈ 𝐵)
14371a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦 ∈ V)
144 simpr 475 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ¬ 𝑦𝑒)
145 fveq2 5986 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
14645, 65, 79, 97, 142, 143, 144, 76, 145gsumunsn 18093 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦)))
147 simpr 475 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
148139, 147feqresmpt 6043 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧)))
149148oveq2d 6441 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))))
150 resabs1 5238 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒))
15157, 150mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒))
15259adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑒𝐴)
153139, 152feqresmpt 6043 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺𝑒) = (𝑧𝑒 ↦ (𝐺𝑧)))
154151, 153eqtrd 2548 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝑧𝑒 ↦ (𝐺𝑧)))
155154oveq2d 6441 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧))))
156 resabs1 5238 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑦} ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}))
15770, 156mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}))
15870, 147syl5ss 3483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
159139, 158feqresmpt 6043 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺𝑧)))
160157, 159eqtrd 2548 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺𝑧)))
161160oveq2d 6441 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺𝑧))))
16235, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ Mnd)
163162adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑀 ∈ Mnd)
16471a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V)
16573a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ (𝑒 ∪ {𝑦}))
166147, 165sseldd 3473 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
167139, 166ffvelrnd 6151 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺𝑦) ∈ 𝐵)
168145adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 = 𝑦) → (𝐺𝑧) = (𝐺𝑦))
16945, 163, 164, 167, 168gsumsnd 18086 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺𝑧))) = (𝐺𝑦))
170161, 169eqtrd 2548 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝐺𝑦))
171155, 170oveq12d 6443 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦)))
172149, 171eqeq12d 2529 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦))))
173172adantr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦))))
174146, 173mpbird 245 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))))
17557, 150ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒)
176175oveq2i 6436 . . . . . . . . . . . . . . 15 (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝐺𝑒))
17770, 156ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})
178177oveq2i 6436 . . . . . . . . . . . . . . 15 (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝐺 ↾ {𝑦}))
179176, 178oveq12i 6437 . . . . . . . . . . . . . 14 ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦})))
180174, 179syl6eq 2564 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))))
18170, 69syl5ss 3483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → {𝑦} ⊆ 𝐴)
18268, 181feqresmpt 6043 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐺𝑥)))
183182oveq2d 6441 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))))
184 cmnmnd 17943 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ CMnd → 𝑀 ∈ Mnd)
18579, 184syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑀 ∈ Mnd)
186 fveq2 5986 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
18745, 186gsumsn 18088 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ (𝐺𝑦) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))) = (𝐺𝑦))
188185, 143, 76, 187syl3anc 1317 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))) = (𝐺𝑦))
189183, 188eqtrd 2548 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝐺𝑦))
190189oveq2d 6441 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
191180, 190eqtrd 2548 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
192191adantr 479 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
193116, 138, 1923brtr4d 4513 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
19462, 63, 64, 193syl21anc 1316 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
195194exp31 627 . . . . . . . 8 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
196195a2d 29 . . . . . . 7 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
19761, 196syl5 33 . . . . . 6 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → (((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
19810, 18, 26, 34, 56, 197findcard2s 7960 . . . . 5 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴))))
199198imp 443 . . . 4 ((𝐴 ∈ Fin ∧ (𝜑𝐴𝐴)) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
2002, 199mpanr2 715 . . 3 ((𝐴 ∈ Fin ∧ 𝜑) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
2011, 200mpancom 699 . 2 (𝜑 → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
202 fnresdm 5799 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
203106, 202syl 17 . . 3 (𝜑 → (𝐹𝐴) = 𝐹)
204203oveq2d 6441 . 2 (𝜑 → (𝑀 Σg (𝐹𝐴)) = (𝑀 Σg 𝐹))
205 fnresdm 5799 . . . 4 (𝐺 Fn 𝐴 → (𝐺𝐴) = 𝐺)
206108, 205syl 17 . . 3 (𝜑 → (𝐺𝐴) = 𝐺)
207206oveq2d 6441 . 2 (𝜑 → (𝑀 Σg (𝐺𝐴)) = (𝑀 Σg 𝐺))
208201, 204, 2073brtr3d 4512 1 (𝜑 → (𝑀 Σg 𝐹) (𝑀 Σg 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  Vcvv 3077  cun 3442  wss 3444  c0 3777  {csn 4028   class class class wbr 4481  cmpt 4541  cres 4934   Fn wfn 5684  wf 5685  cfv 5689  (class class class)co 6425  𝑟 cofr 6668  Fincfn 7715  Basecbs 15583  +gcplusg 15656  lecple 15663  0gc0g 15811   Σg cgsu 15812  Posetcpo 16659  Tosetctos 16752  Mndcmnd 17013  CMndccmn 17928  oMndcomnd 28835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-inf2 8295  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-of 6669  df-ofr 6670  df-om 6832  df-1st 6932  df-2nd 6933  df-supp 7056  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-1o 7321  df-oadd 7325  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-fin 7719  df-fsupp 8033  df-oi 8172  df-card 8522  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-nn 10774  df-2 10832  df-n0 11046  df-z 11117  df-uz 11424  df-fz 12062  df-fzo 12199  df-seq 12528  df-hash 12844  df-ndx 15586  df-slot 15587  df-base 15588  df-sets 15589  df-ress 15590  df-plusg 15669  df-0g 15813  df-gsum 15814  df-mre 15965  df-mrc 15966  df-acs 15968  df-preset 16647  df-poset 16665  df-toset 16753  df-mgm 16961  df-sgrp 17003  df-mnd 17014  df-submnd 17055  df-mulg 17260  df-cntz 17469  df-cmn 17930  df-omnd 28837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator