MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1eq Structured version   Visualization version   GIF version

Theorem gsumply1eq 20465
Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019.)
Hypotheses
Ref Expression
gsumply1eq.p 𝑃 = (Poly1𝑅)
gsumply1eq.x 𝑋 = (var1𝑅)
gsumply1eq.e = (.g‘(mulGrp‘𝑃))
gsumply1eq.r (𝜑𝑅 ∈ Ring)
gsumply1eq.k 𝐾 = (Base‘𝑅)
gsumply1eq.m = ( ·𝑠𝑃)
gsumply1eq.0 0 = (0g𝑅)
gsumply1eq.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsumply1eq.f1 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsumply1eq.b (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
gsumply1eq.f2 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
gsumply1eq.o (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
gsumply1eq.q (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
Assertion
Ref Expression
gsumply1eq (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘   0 ,𝑘   ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem gsumply1eq
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 gsumply1eq.r . . 3 (𝜑𝑅 ∈ Ring)
2 gsumply1eq.o . . . 4 (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
3 gsumply1eq.p . . . . 5 𝑃 = (Poly1𝑅)
4 eqid 2819 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 gsumply1eq.x . . . . 5 𝑋 = (var1𝑅)
6 gsumply1eq.e . . . . 5 = (.g‘(mulGrp‘𝑃))
7 gsumply1eq.k . . . . 5 𝐾 = (Base‘𝑅)
8 gsumply1eq.m . . . . 5 = ( ·𝑠𝑃)
9 gsumply1eq.0 . . . . 5 0 = (0g𝑅)
10 gsumply1eq.a . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
11 gsumply1eq.f1 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
123, 4, 5, 6, 1, 7, 8, 9, 10, 11gsumsmonply1 20463 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) ∈ (Base‘𝑃))
132, 12eqeltrd 2911 . . 3 (𝜑𝑂 ∈ (Base‘𝑃))
14 gsumply1eq.q . . . 4 (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
15 gsumply1eq.b . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
16 gsumply1eq.f2 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
173, 4, 5, 6, 1, 7, 8, 9, 15, 16gsumsmonply1 20463 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) ∈ (Base‘𝑃))
1814, 17eqeltrd 2911 . . 3 (𝜑𝑄 ∈ (Base‘𝑃))
19 eqid 2819 . . . . 5 (coe1𝑂) = (coe1𝑂)
20 eqid 2819 . . . . 5 (coe1𝑄) = (coe1𝑄)
213, 4, 19, 20ply1coe1eq 20458 . . . 4 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝑂 = 𝑄))
2221bicomd 225 . . 3 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
231, 13, 18, 22syl3anc 1366 . 2 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
242adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
25 nfcv 2975 . . . . . . . . . 10 𝑙(𝐴 (𝑘 𝑋))
26 nfcsb1v 3905 . . . . . . . . . . 11 𝑘𝑙 / 𝑘𝐴
27 nfcv 2975 . . . . . . . . . . 11 𝑘
28 nfcv 2975 . . . . . . . . . . 11 𝑘(𝑙 𝑋)
2926, 27, 28nfov 7178 . . . . . . . . . 10 𝑘(𝑙 / 𝑘𝐴 (𝑙 𝑋))
30 csbeq1a 3895 . . . . . . . . . . 11 (𝑘 = 𝑙𝐴 = 𝑙 / 𝑘𝐴)
31 oveq1 7155 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑘 𝑋) = (𝑙 𝑋))
3230, 31oveq12d 7166 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴 (𝑘 𝑋)) = (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3325, 29, 32cbvmpt 5158 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3433oveq2i 7159 . . . . . . . 8 (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))
3524, 34syl6eq 2870 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))
3635fveq2d 6667 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑂) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))))
3736fveq1d 6665 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘))
381adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
39 nfv 1909 . . . . . . . . . 10 𝑙 𝐴𝐾
4026nfel1 2992 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐴𝐾
4130eleq1d 2895 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴𝐾𝑙 / 𝑘𝐴𝐾))
4239, 40, 41cbvralw 3440 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐴𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4310, 42sylib 220 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4443adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
45 nfcv 2975 . . . . . . . . . 10 𝑙𝐴
4645, 26, 30cbvmpt 5158 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐴) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴)
4746, 11eqbrtrrid 5093 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
4847adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
49 simpr 487 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
503, 4, 5, 6, 38, 7, 8, 9, 44, 48, 49gsummoncoe1 20464 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐴)
51 csbcow 3896 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝑘 / 𝑘𝐴
52 csbid 3894 . . . . . . 7 𝑘 / 𝑘𝐴 = 𝐴
5351, 52eqtri 2842 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝐴
5450, 53syl6eq 2870 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝐴)
5537, 54eqtrd 2854 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = 𝐴)
5614adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
57 nfcv 2975 . . . . . . . . . . 11 𝑙(𝐵 (𝑘 𝑋))
58 nfcsb1v 3905 . . . . . . . . . . . 12 𝑘𝑙 / 𝑘𝐵
5958, 27, 28nfov 7178 . . . . . . . . . . 11 𝑘(𝑙 / 𝑘𝐵 (𝑙 𝑋))
60 csbeq1a 3895 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6160, 31oveq12d 7166 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝐵 (𝑘 𝑋)) = (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6257, 59, 61cbvmpt 5158 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6362a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))
6463oveq2d 7164 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6556, 64eqtrd 2854 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6665fveq2d 6667 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑄) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))))
6766fveq1d 6665 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘))
68 nfv 1909 . . . . . . . . . 10 𝑙 𝐵𝐾
6958nfel1 2992 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐵𝐾
7060eleq1d 2895 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐵𝐾𝑙 / 𝑘𝐵𝐾))
7168, 69, 70cbvralw 3440 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐵𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7215, 71sylib 220 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7372adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
74 nfcv 2975 . . . . . . . . . 10 𝑙𝐵
7574, 58, 60cbvmpt 5158 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐵) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵)
7675, 16eqbrtrrid 5093 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
7776adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
783, 4, 5, 6, 38, 7, 8, 9, 73, 77, 49gsummoncoe1 20464 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐵)
79 csbcow 3896 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
80 csbid 3894 . . . . . . 7 𝑘 / 𝑘𝐵 = 𝐵
8179, 80eqtri 2842 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝐵
8278, 81syl6eq 2870 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝐵)
8367, 82eqtrd 2854 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = 𝐵)
8455, 83eqeq12d 2835 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝐴 = 𝐵))
8584ralbidva 3194 . 2 (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
8623, 85bitrd 281 1 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  csb 3881   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148   finSupp cfsupp 8825  0cn0 11889  Basecbs 16475   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  .gcmg 18216  mulGrpcmgp 19231  Ringcrg 19289  var1cv1 20336  Poly1cpl1 20337  coe1cco1 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-srg 19248  df-ring 19291  df-subrg 19525  df-lmod 19628  df-lss 19696  df-psr 20128  df-mvr 20129  df-mpl 20130  df-opsr 20132  df-psr1 20340  df-vr1 20341  df-ply1 20342  df-coe1 20343
This theorem is referenced by:  chcoeffeqlem  21485
  Copyright terms: Public domain W3C validator