MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Visualization version   GIF version

Theorem gsumress 17045
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.s . . . . . . . . 9 (𝜑𝑆𝐵)
2 gsumress.z . . . . . . . . 9 (𝜑0𝑆)
31, 2sseldd 3568 . . . . . . . 8 (𝜑0𝐵)
4 gsumress.c . . . . . . . . 9 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
54ralrimiva 2948 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6 oveq1 6534 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
76eqeq1d 2611 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
8 oveq2 6535 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 + 𝑦) = (𝑥 + 0 ))
98eqeq1d 2611 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥 + 0 ) = 𝑥))
107, 9anbi12d 742 . . . . . . . . . 10 (𝑦 = 0 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
1110ralbidv 2968 . . . . . . . . 9 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
1211elrab 3330 . . . . . . . 8 ( 0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
133, 5, 12sylanbrc 694 . . . . . . 7 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
1413snssd 4280 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
15 gsumress.g . . . . . . . 8 (𝜑𝐺𝑉)
16 gsumress.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
17 eqid 2609 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
18 gsumress.o . . . . . . . . 9 + = (+g𝐺)
19 eqid 2609 . . . . . . . . 9 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
2016, 17, 18, 19mgmidsssn0 17038 . . . . . . . 8 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
2115, 20syl 17 . . . . . . 7 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
2221, 13sseldd 3568 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐺)})
23 elsni 4141 . . . . . . . . 9 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
2422, 23syl 17 . . . . . . . 8 (𝜑0 = (0g𝐺))
2524sneqd 4136 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐺)})
2621, 25sseqtr4d 3604 . . . . . 6 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ { 0 })
2714, 26eqssd 3584 . . . . 5 (𝜑 → { 0 } = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
281sselda 3567 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝐵)
2928, 4syldan 485 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3029ralrimiva 2948 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3110ralbidv 2968 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
3231elrab 3330 . . . . . . . . 9 ( 0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ( 0𝑆 ∧ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
332, 30, 32sylanbrc 694 . . . . . . . 8 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
34 gsumress.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
3534, 16ressbas2 15704 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
361, 35syl 17 . . . . . . . . 9 (𝜑𝑆 = (Base‘𝐻))
37 fvex 6098 . . . . . . . . . . . . . . 15 (Base‘𝐻) ∈ V
3836, 37syl6eqel 2695 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
3934, 18ressplusg 15764 . . . . . . . . . . . . . 14 (𝑆 ∈ V → + = (+g𝐻))
4038, 39syl 17 . . . . . . . . . . . . 13 (𝜑+ = (+g𝐻))
4140oveqd 6544 . . . . . . . . . . . 12 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
4241eqeq1d 2611 . . . . . . . . . . 11 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
4340oveqd 6544 . . . . . . . . . . . 12 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
4443eqeq1d 2611 . . . . . . . . . . 11 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4542, 44anbi12d 742 . . . . . . . . . 10 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4636, 45raleqbidv 3128 . . . . . . . . 9 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4736, 46rabeqbidv 3167 . . . . . . . 8 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4833, 47eleqtrd 2689 . . . . . . 7 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4948snssd 4280 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
50 ovex 6555 . . . . . . . . . 10 (𝐺s 𝑆) ∈ V
5134, 50eqeltri 2683 . . . . . . . . 9 𝐻 ∈ V
5251a1i 11 . . . . . . . 8 (𝜑𝐻 ∈ V)
53 eqid 2609 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
54 eqid 2609 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
55 eqid 2609 . . . . . . . . 9 (+g𝐻) = (+g𝐻)
56 eqid 2609 . . . . . . . . 9 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
5753, 54, 55, 56mgmidsssn0 17038 . . . . . . . 8 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5852, 57syl 17 . . . . . . 7 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5958, 48sseldd 3568 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐻)})
60 elsni 4141 . . . . . . . . 9 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
6159, 60syl 17 . . . . . . . 8 (𝜑0 = (0g𝐻))
6261sneqd 4136 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐻)})
6358, 62sseqtr4d 3604 . . . . . 6 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ { 0 })
6449, 63eqssd 3584 . . . . 5 (𝜑 → { 0 } = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6527, 64eqtr3d 2645 . . . 4 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6665sseq2d 3595 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
6724, 61eqtr3d 2645 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
6840seqeq2d 12625 . . . . . . . . . 10 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
6968fveq1d 6090 . . . . . . . . 9 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
7069eqeq2d 2619 . . . . . . . 8 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
7170anbi2d 735 . . . . . . 7 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7271rexbidv 3033 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7372exbidv 1836 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7473iotabidv 5775 . . . 4 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7540seqeq2d 12625 . . . . . . . . 9 (𝜑 → seq1( + , (𝐹𝑓)) = seq1((+g𝐻), (𝐹𝑓)))
7675fveq1d 6090 . . . . . . . 8 (𝜑 → (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
7776eqeq2d 2619 . . . . . . 7 (𝜑 → (𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))) ↔ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))
7877anbi2d 735 . . . . . 6 (𝜑 → ((𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) ↔ (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
7978exbidv 1836 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) ↔ ∃𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
8079iotabidv 5775 . . . 4 (𝜑 → (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))) = (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
8174, 80ifeq12d 4055 . . 3 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))) = if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))))
8266, 67, 81ifbieq12d 4062 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
8327difeq2d 3689 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}))
8483imaeq2d 5372 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})))
85 gsumress.a . . 3 (𝜑𝐴𝑋)
86 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
8786, 1fssd 5956 . . 3 (𝜑𝐹:𝐴𝐵)
8816, 17, 18, 19, 84, 15, 85, 87gsumval 17040 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
8964difeq2d 3689 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
9089imaeq2d 5372 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})))
9136feq3d 5931 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
9286, 91mpbid 220 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
9353, 54, 55, 56, 90, 52, 85, 92gsumval 17040 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
9482, 88, 933eqtr4d 2653 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  cdif 3536  wss 3539  ifcif 4035  {csn 4124  ccnv 5027  ran crn 5029  cima 5031  ccom 5032  cio 5752  wf 5786  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  1c1 9793  cuz 11519  ...cfz 12152  seqcseq 12618  #chash 12934  Basecbs 15641  s cress 15642  +gcplusg 15714  0gc0g 15869   Σg cgsu 15870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-seq 12619  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-0g 15871  df-gsum 15872
This theorem is referenced by:  gsumsubm  17142  regsumfsum  19579  regsumsupp  19732  frlmgsum  19872  imasdsf1olem  21929  esumpfinvallem  29269  sge0tsms  39077  aacllem  42319
  Copyright terms: Public domain W3C validator