Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwsubmcl Structured version   Visualization version   GIF version

Theorem gsumwsubmcl 17296
 Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6612 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
2 eqid 2621 . . . . 5 (0g𝐺) = (0g𝐺)
32gsum0 17199 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
41, 3syl6eq 2671 . . 3 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
54eleq1d 2683 . 2 (𝑊 = ∅ → ((𝐺 Σg 𝑊) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
6 eqid 2621 . . . 4 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2621 . . . 4 (+g𝐺) = (+g𝐺)
8 submrcl 17267 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
98ad2antrr 761 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
10 lennncl 13264 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ)
1110adantll 749 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ)
12 nnm1nn0 11278 . . . . . 6 ((#‘𝑊) ∈ ℕ → ((#‘𝑊) − 1) ∈ ℕ0)
1311, 12syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((#‘𝑊) − 1) ∈ ℕ0)
14 nn0uz 11666 . . . . 5 0 = (ℤ‘0)
1513, 14syl6eleq 2708 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((#‘𝑊) − 1) ∈ (ℤ‘0))
16 wrdf 13249 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(#‘𝑊))⟶𝑆)
1716ad2antlr 762 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(#‘𝑊))⟶𝑆)
1811nnzd 11425 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℤ)
19 fzoval 12412 . . . . . . . 8 ((#‘𝑊) ∈ ℤ → (0..^(#‘𝑊)) = (0...((#‘𝑊) − 1)))
2018, 19syl 17 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(#‘𝑊)) = (0...((#‘𝑊) − 1)))
2120feq2d 5988 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(#‘𝑊))⟶𝑆𝑊:(0...((#‘𝑊) − 1))⟶𝑆))
2217, 21mpbid 222 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((#‘𝑊) − 1))⟶𝑆)
236submss 17271 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2423ad2antrr 761 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
2522, 24fssd 6014 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((#‘𝑊) − 1))⟶(Base‘𝐺))
266, 7, 9, 15, 25gsumval2 17201 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((#‘𝑊) − 1)))
2722ffvelrnda 6315 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((#‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
28 simpll 789 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ∈ (SubMnd‘𝐺))
297submcl 17274 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
30293expb 1263 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3128, 30sylan 488 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3215, 27, 31seqcl 12761 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((#‘𝑊) − 1)) ∈ 𝑆)
3326, 32eqeltrd 2698 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
342subm0cl 17273 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
3534adantr 481 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (0g𝐺) ∈ 𝑆)
365, 33, 35pm2.61ne 2875 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ⊆ wss 3555  ∅c0 3891  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   − cmin 10210  ℕcn 10964  ℕ0cn0 11236  ℤcz 11321  ℤ≥cuz 11631  ...cfz 12268  ..^cfzo 12406  seqcseq 12741  #chash 13057  Word cword 13230  Basecbs 15781  +gcplusg 15862  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  SubMndcsubmnd 17255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257 This theorem is referenced by:  gsumwcl  17298  gsumwspan  17304  frmdss2  17321  psgnunilem5  17835
 Copyright terms: Public domain W3C validator