MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzaddlem Structured version   Visualization version   GIF version

Theorem gsumzaddlem 19043
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzaddlem.w 𝑊 = ((𝐹𝐻) supp 0 )
gsumzaddlem.f (𝜑𝐹:𝐴𝐵)
gsumzaddlem.h (𝜑𝐻:𝐴𝐵)
gsumzaddlem.1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzaddlem.2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
gsumzaddlem.3 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
gsumzaddlem.4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
Assertion
Ref Expression
gsumzaddlem (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝑘, +   0 ,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑘,𝐻,𝑥   𝜑,𝑘,𝑥   𝑥,𝑉   𝑘,𝑊,𝑥   𝑘,𝑍,𝑥
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem gsumzaddlem
Dummy variables 𝑓 𝑛 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.g . . . . . 6 (𝜑𝐺 ∈ Mnd)
2 gsumzadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 gsumzadd.0 . . . . . . . 8 0 = (0g𝐺)
42, 3mndidcl 17928 . . . . . . 7 (𝐺 ∈ Mnd → 0𝐵)
51, 4syl 17 . . . . . 6 (𝜑0𝐵)
6 gsumzadd.p . . . . . . 7 + = (+g𝐺)
72, 6, 3mndlid 17933 . . . . . 6 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
81, 5, 7syl2anc 586 . . . . 5 (𝜑 → ( 0 + 0 ) = 0 )
98adantr 483 . . . 4 ((𝜑𝑊 = ∅) → ( 0 + 0 ) = 0 )
10 gsumzaddlem.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
11 gsumzadd.a . . . . . . . 8 (𝜑𝐴𝑉)
123fvexi 6686 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
14 gsumzaddlem.h . . . . . . . . . . 11 (𝜑𝐻:𝐴𝐵)
15 fex 6991 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝐴𝑉) → 𝐻 ∈ V)
1614, 11, 15syl2anc 586 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
1716suppun 7852 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
18 gsumzaddlem.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
1917, 18sseqtrrdi 4020 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
2010, 11, 13, 19gsumcllem 19030 . . . . . . 7 ((𝜑𝑊 = ∅) → 𝐹 = (𝑥𝐴0 ))
2120oveq2d 7174 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐴0 )))
223gsumz 18002 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
231, 11, 22syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥𝐴0 )) = 0 )
2423adantr 483 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
2521, 24eqtrd 2858 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = 0 )
26 fex 6991 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2710, 11, 26syl2anc 586 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
2827suppun 7852 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐻𝐹) supp 0 ))
29 uncom 4131 . . . . . . . . . . 11 (𝐹𝐻) = (𝐻𝐹)
3029oveq1i 7168 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) = ((𝐻𝐹) supp 0 )
3128, 30sseqtrrdi 4020 . . . . . . . . 9 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
3231, 18sseqtrrdi 4020 . . . . . . . 8 (𝜑 → (𝐻 supp 0 ) ⊆ 𝑊)
3314, 11, 13, 32gsumcllem 19030 . . . . . . 7 ((𝜑𝑊 = ∅) → 𝐻 = (𝑥𝐴0 ))
3433oveq2d 7174 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐻) = (𝐺 Σg (𝑥𝐴0 )))
3534, 24eqtrd 2858 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐻) = 0 )
3625, 35oveq12d 7176 . . . 4 ((𝜑𝑊 = ∅) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ( 0 + 0 ))
3711adantr 483 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐴𝑉)
385ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 = ∅) ∧ 𝑥𝐴) → 0𝐵)
3937, 38, 38, 20, 33offval2 7428 . . . . . . 7 ((𝜑𝑊 = ∅) → (𝐹f + 𝐻) = (𝑥𝐴 ↦ ( 0 + 0 )))
409mpteq2dv 5164 . . . . . . 7 ((𝜑𝑊 = ∅) → (𝑥𝐴 ↦ ( 0 + 0 )) = (𝑥𝐴0 ))
4139, 40eqtrd 2858 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐹f + 𝐻) = (𝑥𝐴0 ))
4241oveq2d 7174 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = (𝐺 Σg (𝑥𝐴0 )))
4342, 24eqtrd 2858 . . . 4 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = 0 )
449, 36, 433eqtr4rd 2869 . . 3 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
4544ex 415 . 2 (𝜑 → (𝑊 = ∅ → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
461adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐺 ∈ Mnd)
472, 6mndcl 17921 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
48473expb 1116 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 + 𝑤) ∈ 𝐵)
4946, 48sylan 582 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 + 𝑤) ∈ 𝐵)
5049caovclg 7342 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
51 simprl 769 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ ℕ)
52 nnuz 12284 . . . . . . . 8 ℕ = (ℤ‘1)
5351, 52eleqtrdi 2925 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ (ℤ‘1))
5410adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹:𝐴𝐵)
55 f1of1 6616 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))–1-1𝑊)
5655ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1𝑊)
57 suppssdm 7845 . . . . . . . . . . . . . 14 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
5857a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻))
5918a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 = ((𝐹𝐻) supp 0 ))
60 dmun 5781 . . . . . . . . . . . . . 14 dom (𝐹𝐻) = (dom 𝐹 ∪ dom 𝐻)
6110fdmd 6525 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐴)
6214fdmd 6525 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐻 = 𝐴)
6361, 62uneq12d 4142 . . . . . . . . . . . . . . 15 (𝜑 → (dom 𝐹 ∪ dom 𝐻) = (𝐴𝐴))
64 unidm 4130 . . . . . . . . . . . . . . 15 (𝐴𝐴) = 𝐴
6563, 64syl6eq 2874 . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐹 ∪ dom 𝐻) = 𝐴)
6660, 65syl5req 2871 . . . . . . . . . . . . 13 (𝜑𝐴 = dom (𝐹𝐻))
6758, 59, 663sstr4d 4016 . . . . . . . . . . . 12 (𝜑𝑊𝐴)
6867adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑊𝐴)
69 f1ss 6582 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝑊))–1-1𝑊𝑊𝐴) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
7056, 68, 69syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
71 f1f 6577 . . . . . . . . . 10 (𝑓:(1...(♯‘𝑊))–1-1𝐴𝑓:(1...(♯‘𝑊))⟶𝐴)
7270, 71syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝐴)
73 fco 6533 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹𝑓):(1...(♯‘𝑊))⟶𝐵)
7454, 72, 73syl2anc 586 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹𝑓):(1...(♯‘𝑊))⟶𝐵)
7574ffvelrnda 6853 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
7614adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐻:𝐴𝐵)
77 fco 6533 . . . . . . . . 9 ((𝐻:𝐴𝐵𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻𝑓):(1...(♯‘𝑊))⟶𝐵)
7876, 72, 77syl2anc 586 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻𝑓):(1...(♯‘𝑊))⟶𝐵)
7978ffvelrnda 6853 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
8054ffnd 6517 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹 Fn 𝐴)
8176ffnd 6517 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐻 Fn 𝐴)
8211adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐴𝑉)
83 ovexd 7193 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (1...(♯‘𝑊)) ∈ V)
84 inidm 4197 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
8580, 81, 72, 82, 82, 83, 84ofco 7431 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹f + 𝐻) ∘ 𝑓) = ((𝐹𝑓) ∘f + (𝐻𝑓)))
8685fveq1d 6674 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘))
8786adantr 483 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘))
88 fnfco 6545 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹𝑓) Fn (1...(♯‘𝑊)))
8980, 72, 88syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹𝑓) Fn (1...(♯‘𝑊)))
90 fnfco 6545 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻𝑓) Fn (1...(♯‘𝑊)))
9181, 72, 90syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻𝑓) Fn (1...(♯‘𝑊)))
92 inidm 4197 . . . . . . . . 9 ((1...(♯‘𝑊)) ∩ (1...(♯‘𝑊))) = (1...(♯‘𝑊))
93 eqidd 2824 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) = ((𝐹𝑓)‘𝑘))
94 eqidd 2824 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) = ((𝐻𝑓)‘𝑘))
9589, 91, 83, 83, 92, 93, 94ofval 7420 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘) = (((𝐹𝑓)‘𝑘) + ((𝐻𝑓)‘𝑘)))
9687, 95eqtrd 2858 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓)‘𝑘) + ((𝐻𝑓)‘𝑘)))
971ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐺 ∈ Mnd)
98 elfzouz 13045 . . . . . . . . . 10 (𝑛 ∈ (1..^(♯‘𝑊)) → 𝑛 ∈ (ℤ‘1))
9998adantl 484 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈ (ℤ‘1))
100 elfzouz2 13055 . . . . . . . . . . . . 13 (𝑛 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑛))
101100adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑛))
102 fzss2 12950 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑛) → (1...𝑛) ⊆ (1...(♯‘𝑊)))
103101, 102syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (1...𝑛) ⊆ (1...(♯‘𝑊)))
104103sselda 3969 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...(♯‘𝑊)))
10575adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
106104, 105syldan 593 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
1072, 6mndcl 17921 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑘𝐵𝑥𝐵) → (𝑘 + 𝑥) ∈ 𝐵)
1081073expb 1116 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
10997, 108sylan 582 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
11099, 106, 109seqcl 13393 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐹𝑓))‘𝑛) ∈ 𝐵)
11179adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
112104, 111syldan 593 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
11399, 112, 109seqcl 13393 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) ∈ 𝐵)
114 fzofzp1 13137 . . . . . . . . 9 (𝑛 ∈ (1..^(♯‘𝑊)) → (𝑛 + 1) ∈ (1...(♯‘𝑊)))
115 ffvelrn 6851 . . . . . . . . 9 (((𝐹𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ 𝐵)
11674, 114, 115syl2an 597 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ 𝐵)
117 ffvelrn 6851 . . . . . . . . 9 (((𝐻𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘(𝑛 + 1)) ∈ 𝐵)
11878, 114, 117syl2an 597 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻𝑓)‘(𝑛 + 1)) ∈ 𝐵)
119 fvco3 6762 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1))))
12072, 114, 119syl2an 597 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1))))
121 fveq2 6672 . . . . . . . . . . . . 13 (𝑘 = (𝑓‘(𝑛 + 1)) → (𝐹𝑘) = (𝐹‘(𝑓‘(𝑛 + 1))))
122121eleq1d 2899 . . . . . . . . . . . 12 (𝑘 = (𝑓‘(𝑛 + 1)) → ((𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ↔ (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
123 gsumzaddlem.4 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
124123expr 459 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐴𝑥) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
125124ralrimiv 3183 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
126125ex 415 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
127126alrimiv 1928 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
128127ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
129 imassrn 5942 . . . . . . . . . . . . . 14 (𝑓 “ (1...𝑛)) ⊆ ran 𝑓
13072adantr 483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))⟶𝐴)
131130frnd 6523 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝑓𝐴)
132129, 131sstrid 3980 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ⊆ 𝐴)
133 vex 3499 . . . . . . . . . . . . . . 15 𝑓 ∈ V
134133imaex 7623 . . . . . . . . . . . . . 14 (𝑓 “ (1...𝑛)) ∈ V
135 sseq1 3994 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓 “ (1...𝑛)) → (𝑥𝐴 ↔ (𝑓 “ (1...𝑛)) ⊆ 𝐴))
136 difeq2 4095 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐴𝑥) = (𝐴 ∖ (𝑓 “ (1...𝑛))))
137 reseq2 5850 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐻𝑥) = (𝐻 ↾ (𝑓 “ (1...𝑛))))
138137oveq2d 7174 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐺 Σg (𝐻𝑥)) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
139138sneqd 4581 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓 “ (1...𝑛)) → {(𝐺 Σg (𝐻𝑥))} = {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})
140139fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓 “ (1...𝑛)) → (𝑍‘{(𝐺 Σg (𝐻𝑥))}) = (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
141140eleq2d 2900 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓 “ (1...𝑛)) → ((𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}) ↔ (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
142136, 141raleqbidv 3403 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓 “ (1...𝑛)) → (∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}) ↔ ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
143135, 142imbi12d 347 . . . . . . . . . . . . . 14 (𝑥 = (𝑓 “ (1...𝑛)) → ((𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})) ↔ ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))))
144134, 143spcv 3608 . . . . . . . . . . . . 13 (∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})) → ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
145128, 132, 144sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
146 ffvelrn 6851 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴)
14772, 114, 146syl2an 597 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴)
148 fzp1nel 12994 . . . . . . . . . . . . . 14 ¬ (𝑛 + 1) ∈ (1...𝑛)
14970adantr 483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
150114adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑛 + 1) ∈ (1...(♯‘𝑊)))
151 f1elima 7023 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝑊))–1-1𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊)) ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛)))
152149, 150, 103, 151syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛)))
153148, 152mtbiri 329 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ¬ (𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)))
154147, 153eldifd 3949 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ (𝐴 ∖ (𝑓 “ (1...𝑛))))
155122, 145, 154rspcdva 3627 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
156120, 155eqeltrd 2915 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
157 gsumzadd.z . . . . . . . . . . . . 13 𝑍 = (Cntz‘𝐺)
158134a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ∈ V)
15914ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐻:𝐴𝐵)
160159, 132fssresd 6547 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐻 ↾ (𝑓 “ (1...𝑛))):(𝑓 “ (1...𝑛))⟶𝐵)
161 gsumzaddlem.2 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
162161ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
163 resss 5880 . . . . . . . . . . . . . . 15 (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ 𝐻
164163rnssi 5812 . . . . . . . . . . . . . 14 ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻
165157cntzidss 18470 . . . . . . . . . . . . . 14 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛)))))
166162, 164, 165sylancl 588 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛)))))
16799, 52eleqtrrdi 2926 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈ ℕ)
168 f1ores 6631 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝑊))–1-1𝐴 ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)))
169149, 103, 168syl2anc 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)))
170 f1of1 6616 . . . . . . . . . . . . . 14 ((𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛)))
171169, 170syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛)))
172 suppssdm 7845 . . . . . . . . . . . . . . 15 ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ dom (𝐻 ↾ (𝑓 “ (1...𝑛)))
173 dmres 5877 . . . . . . . . . . . . . . . 16 dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)
174173a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻))
175172, 174sseqtrid 4021 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻))
176 inss1 4207 . . . . . . . . . . . . . . 15 ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ (𝑓 “ (1...𝑛))
177 df-ima 5570 . . . . . . . . . . . . . . . 16 (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛))
178177a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛)))
179176, 178sseqtrid 4021 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ ran (𝑓 ↾ (1...𝑛)))
180175, 179sstrd 3979 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ran (𝑓 ↾ (1...𝑛)))
181 eqid 2823 . . . . . . . . . . . . 13 (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) = (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 )
1822, 3, 6, 157, 97, 158, 160, 166, 167, 171, 180, 181gsumval3 19029 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))) = (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛))
183177eqimss2i 4028 . . . . . . . . . . . . . . . . . 18 ran (𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛))
184 cores 6104 . . . . . . . . . . . . . . . . . 18 (ran (𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))))
185183, 184ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))
186 resco 6105 . . . . . . . . . . . . . . . . 17 ((𝐻𝑓) ↾ (1...𝑛)) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))
187185, 186eqtr4i 2849 . . . . . . . . . . . . . . . 16 ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = ((𝐻𝑓) ↾ (1...𝑛))
188187fveq1i 6673 . . . . . . . . . . . . . . 15 (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = (((𝐻𝑓) ↾ (1...𝑛))‘𝑘)
189 fvres 6691 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → (((𝐻𝑓) ↾ (1...𝑛))‘𝑘) = ((𝐻𝑓)‘𝑘))
190188, 189syl5eq 2870 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻𝑓)‘𝑘))
191190adantl 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻𝑓)‘𝑘))
19299, 191seqfveq 13397 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛) = (seq1( + , (𝐻𝑓))‘𝑛))
193182, 192eqtr2d 2859 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
194 fvex 6685 . . . . . . . . . . . 12 (seq1( + , (𝐻𝑓))‘𝑛) ∈ V
195194elsn 4584 . . . . . . . . . . 11 ((seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))} ↔ (seq1( + , (𝐻𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
196193, 195sylibr 236 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})
1976, 157cntzi 18461 . . . . . . . . . 10 ((((𝐹𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ∧ (seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) → (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)) = ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))))
198156, 196, 197syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)) = ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))))
199198eqcomd 2829 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))) = (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)))
2002, 6, 97, 110, 113, 116, 118, 199mnd4g 17927 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((seq1( + , (𝐹𝑓))‘𝑛) + (seq1( + , (𝐻𝑓))‘𝑛)) + (((𝐹𝑓)‘(𝑛 + 1)) + ((𝐻𝑓)‘(𝑛 + 1)))) = (((seq1( + , (𝐹𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))) + ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐻𝑓)‘(𝑛 + 1)))))
20150, 50, 53, 75, 79, 96, 200seqcaopr3 13408 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (seq1( + , ((𝐹f + 𝐻) ∘ 𝑓))‘(♯‘𝑊)) = ((seq1( + , (𝐹𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻𝑓))‘(♯‘𝑊))))
20249, 54, 76, 82, 82, 84off 7426 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹f + 𝐻):𝐴𝐵)
203 gsumzaddlem.3 . . . . . . . 8 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
204203adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
20546, 108sylan 582 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
206205, 54, 76, 82, 82, 84off 7426 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹f + 𝐻):𝐴𝐵)
207 eldifi 4105 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ ran 𝑓) → 𝑥𝐴)
208 eqidd 2824 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
209 eqidd 2824 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
21080, 81, 82, 82, 84, 208, 209ofval 7420 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → ((𝐹f + 𝐻)‘𝑥) = ((𝐹𝑥) + (𝐻𝑥)))
211207, 210sylan2 594 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹f + 𝐻)‘𝑥) = ((𝐹𝑥) + (𝐻𝑥)))
21217adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
213 f1ofo 6624 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))–onto𝑊)
214 forn 6595 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝑊))–onto𝑊 → ran 𝑓 = 𝑊)
215213, 214syl 17 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ran 𝑓 = 𝑊)
216215, 18syl6eq 2874 . . . . . . . . . . . . . 14 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ran 𝑓 = ((𝐹𝐻) supp 0 ))
217216sseq2d 4001 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
218217ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
219212, 218mpbird 259 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹 supp 0 ) ⊆ ran 𝑓)
22012a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 0 ∈ V)
22154, 219, 82, 220suppssr 7863 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐹𝑥) = 0 )
22228adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐻𝐹) supp 0 ))
223222, 30sseqtrrdi 4020 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
224216sseq2d 4001 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
225224ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
226223, 225mpbird 259 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ran 𝑓)
22776, 226, 82, 220suppssr 7863 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐻𝑥) = 0 )
228221, 227oveq12d 7176 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
2298ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ( 0 + 0 ) = 0 )
230211, 228, 2293eqtrd 2862 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹f + 𝐻)‘𝑥) = 0 )
231206, 230suppss 7862 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹f + 𝐻) supp 0 ) ⊆ ran 𝑓)
232 ovex 7191 . . . . . . . . 9 (𝐹f + 𝐻) ∈ V
233232, 133coex 7637 . . . . . . . 8 ((𝐹f + 𝐻) ∘ 𝑓) ∈ V
234 suppimacnv 7843 . . . . . . . . 9 ((((𝐹f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹f + 𝐻) ∘ 𝑓) supp 0 ) = (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })))
235234eqcomd 2829 . . . . . . . 8 ((((𝐹f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹f + 𝐻) ∘ 𝑓) supp 0 ))
236233, 12, 235mp2an 690 . . . . . . 7 (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹f + 𝐻) ∘ 𝑓) supp 0 )
2372, 3, 6, 157, 46, 82, 202, 204, 51, 70, 231, 236gsumval3 19029 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg (𝐹f + 𝐻)) = (seq1( + , ((𝐹f + 𝐻) ∘ 𝑓))‘(♯‘𝑊)))
238 gsumzaddlem.1 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
239238adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
240 eqid 2823 . . . . . . . 8 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
2412, 3, 6, 157, 46, 82, 54, 239, 51, 70, 219, 240gsumval3 19029 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))
242161adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
243 eqid 2823 . . . . . . . 8 ((𝐻𝑓) supp 0 ) = ((𝐻𝑓) supp 0 )
2442, 3, 6, 157, 46, 82, 76, 242, 51, 70, 226, 243gsumval3 19029 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg 𝐻) = (seq1( + , (𝐻𝑓))‘(♯‘𝑊)))
245241, 244oveq12d 7176 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq1( + , (𝐹𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻𝑓))‘(♯‘𝑊))))
246201, 237, 2453eqtr4d 2868 . . . . 5 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
247246expr 459 . . . 4 ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) → (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
248247exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
249248expimpd 456 . 2 (𝜑 → (((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
250 gsumzadd.fn . . . . 5 (𝜑𝐹 finSupp 0 )
251 gsumzadd.hn . . . . 5 (𝜑𝐻 finSupp 0 )
252250, 251fsuppun 8854 . . . 4 (𝜑 → ((𝐹𝐻) supp 0 ) ∈ Fin)
25318, 252eqeltrid 2919 . . 3 (𝜑𝑊 ∈ Fin)
254 fz1f1o 15069 . . 3 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
255253, 254syl 17 . 2 (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
25645, 249, 255mpjaod 856 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wal 1535   = wceq 1537  wex 1780  wcel 2114  wral 3140  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  ccom 5561   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  f cof 7409   supp csupp 7832  Fincfn 8511   finSupp cfsupp 8835  1c1 10540   + caddc 10542  cn 11640  cuz 12246  ...cfz 12895  ..^cfzo 13036  seqcseq 13372  chash 13693  Basecbs 16485  +gcplusg 16567  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913  Cntzccntz 18447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-cntz 18449
This theorem is referenced by:  gsumzadd  19044  dprdfadd  19144
  Copyright terms: Public domain W3C validator