MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Visualization version   GIF version

Theorem gsumzres 19031
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
gsumzres.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzres (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzres
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . . 8 (𝜑𝐴𝑉)
3 inex1g 5225 . . . . . . . 8 (𝐴𝑉 → (𝐴𝑊) ∈ V)
42, 3syl 17 . . . . . . 7 (𝜑 → (𝐴𝑊) ∈ V)
5 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
65gsumz 18002 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑊) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
71, 4, 6syl2anc 586 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
85gsumz 18002 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
91, 2, 8syl2anc 586 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
107, 9eqtr4d 2861 . . . . 5 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
1110adantr 483 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
12 resres 5868 . . . . . . . 8 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
13 gsumzcl.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
14 ffn 6516 . . . . . . . . . 10 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 fnresdm 6468 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
1613, 14, 153syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐹)
1716reseq1d 5854 . . . . . . . 8 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
1812, 17syl5eqr 2872 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
1918adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
205fvexi 6686 . . . . . . . . . 10 0 ∈ V
2120a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
22 ssid 3991 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
2322a1i 11 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
2413, 2, 21, 23gsumcllem 19030 . . . . . . . 8 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2524reseq1d 5854 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = ((𝑘𝐴0 ) ↾ (𝐴𝑊)))
26 inss1 4207 . . . . . . . 8 (𝐴𝑊) ⊆ 𝐴
27 resmpt 5907 . . . . . . . 8 ((𝐴𝑊) ⊆ 𝐴 → ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 )
2925, 28syl6eq 2874 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3019, 29eqtr3d 2860 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝑊) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3130oveq2d 7174 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )))
3224oveq2d 7174 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
3311, 31, 323eqtr4d 2868 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
3433ex 415 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
35 f1ofo 6624 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
36 forn 6595 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3735, 36syl 17 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3837ad2antll 727 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
39 gsumzres.s . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
4039adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝑊)
4138, 40eqsstrd 4007 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓𝑊)
42 cores 6104 . . . . . . . . 9 (ran 𝑓𝑊 → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4341, 42syl 17 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4443seqeq3d 13380 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓)) = seq1((+g𝐺), (𝐹𝑓)))
4544fveq1d 6674 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
46 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
47 eqid 2823 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
491adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
504adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐴𝑊) ∈ V)
5113adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
52 fssres 6546 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5351, 26, 52sylancl 588 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5418feq1d 6501 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
5554biimpa 479 . . . . . . . 8 ((𝜑 ∧ (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
5653, 55syldan 593 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
57 gsumzcl.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
58 resss 5880 . . . . . . . . . 10 (𝐹𝑊) ⊆ 𝐹
5958rnssi 5812 . . . . . . . . 9 ran (𝐹𝑊) ⊆ ran 𝐹
6048cntzidss 18470 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝑊) ⊆ ran 𝐹) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6157, 59, 60sylancl 588 . . . . . . . 8 (𝜑 → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6261adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
63 simprl 769 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (♯‘(𝐹 supp 0 )) ∈ ℕ)
64 f1of1 6616 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
6564ad2antll 727 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
66 suppssdm 7845 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
6766, 13fssdm 6532 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
6867, 39ssind 4211 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
6968adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
70 f1ss 6582 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ (𝐴𝑊)) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
7165, 69, 70syl2anc 586 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
72 fex 6991 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
7313, 2, 72syl2anc 586 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
74 ressuppss 7851 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
7573, 20, 74sylancl 588 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
76 sseq2 3995 . . . . . . . . . . 11 (ran 𝑓 = (𝐹 supp 0 ) → (((𝐹𝑊) supp 0 ) ⊆ ran 𝑓 ↔ ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 )))
7775, 76syl5ibr 248 . . . . . . . . . 10 (ran 𝑓 = (𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7835, 36, 773syl 18 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7978adantl 484 . . . . . . . 8 (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
8079impcom 410 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓)
81 eqid 2823 . . . . . . 7 (((𝐹𝑊) ∘ 𝑓) supp 0 ) = (((𝐹𝑊) ∘ 𝑓) supp 0 )
8246, 5, 47, 48, 49, 50, 56, 62, 63, 71, 80, 81gsumval3 19029 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))))
832adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
8457adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8567adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
86 f1ss 6582 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8765, 85, 86syl2anc 586 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8822, 38sseqtrrid 4022 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
89 eqid 2823 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
9046, 5, 47, 48, 49, 83, 51, 84, 63, 87, 88, 89gsumval3 19029 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
9145, 82, 903eqtr4d 2868 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
9291expr 459 . . . 4 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9392exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9493expimpd 456 . 2 (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
95 gsumzres.w . . 3 (𝜑𝐹 finSupp 0 )
96 fsuppimp 8841 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
9796simprd 498 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
98 fz1f1o 15069 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
9995, 97, 983syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
10034, 94, 99mpjaod 856 1 (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  cin 3937  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148  ran crn 5558  cres 5559  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158   supp csupp 7832  Fincfn 8511   finSupp cfsupp 8835  1c1 10540  cn 11640  ...cfz 12895  seqcseq 13372  chash 13693  Basecbs 16485  +gcplusg 16567  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913  Cntzccntz 18447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-cntz 18449
This theorem is referenced by:  gsumres  19035  gsumzsplit  19049  gsumpt  19084  dmdprdsplitlem  19161  dpjidcl  19182  mplcoe5  20251
  Copyright terms: Public domain W3C validator