Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtiso Structured version   Visualization version   GIF version

Theorem gtiso 30439
Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Assertion
Ref Expression
gtiso ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))

Proof of Theorem gtiso
StepHypRef Expression
1 eqid 2824 . . . . 5 ((𝐴 × 𝐴) ∖ < ) = ((𝐴 × 𝐴) ∖ < )
2 eqid 2824 . . . . 5 ((𝐵 × 𝐵) ∖ < ) = ((𝐵 × 𝐵) ∖ < )
31, 2isocnv3 7088 . . . 4 (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵))
43a1i 11 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
5 df-le 10684 . . . . . . . . . 10 ≤ = ((ℝ* × ℝ*) ∖ < )
65cnveqi 5748 . . . . . . . . 9 ≤ = ((ℝ* × ℝ*) ∖ < )
7 cnvdif 6005 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
8 cnvxp 6017 . . . . . . . . . 10 (ℝ* × ℝ*) = (ℝ* × ℝ*)
9 ltrel 10706 . . . . . . . . . . 11 Rel <
10 dfrel2 6049 . . . . . . . . . . 11 (Rel < ↔ < = < )
119, 10mpbi 232 . . . . . . . . . 10 < = <
128, 11difeq12i 4100 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
136, 7, 123eqtri 2851 . . . . . . . 8 ≤ = ((ℝ* × ℝ*) ∖ < )
1413ineq1i 4188 . . . . . . 7 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴))
15 indif1 4251 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
1614, 15eqtri 2847 . . . . . 6 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
17 xpss12 5573 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*) → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
1817anidms 569 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
19 sseqin2 4195 . . . . . . . 8 ((𝐴 × 𝐴) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2018, 19sylib 220 . . . . . . 7 (𝐴 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2120difeq1d 4101 . . . . . 6 (𝐴 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < ) = ((𝐴 × 𝐴) ∖ < ))
2216, 21syl5req 2872 . . . . 5 (𝐴 ⊆ ℝ* → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
2322adantr 483 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
24 isoeq2 7074 . . . 4 (((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
2523, 24syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
265ineq1i 4188 . . . . . . 7 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵))
27 indif1 4251 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
2826, 27eqtri 2847 . . . . . 6 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
29 xpss12 5573 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
3029anidms 569 . . . . . . . 8 (𝐵 ⊆ ℝ* → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
31 sseqin2 4195 . . . . . . . 8 ((𝐵 × 𝐵) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3230, 31sylib 220 . . . . . . 7 (𝐵 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3332difeq1d 4101 . . . . . 6 (𝐵 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < ) = ((𝐵 × 𝐵) ∖ < ))
3428, 33syl5req 2872 . . . . 5 (𝐵 ⊆ ℝ* → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
3534adantl 484 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
36 isoeq3 7075 . . . 4 (((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
3735, 36syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
384, 25, 373bitrd 307 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
39 isocnv2 7087 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
40 isores2 7089 . . . 4 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
41 isores1 7090 . . . 4 (𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4240, 41bitri 277 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
43 lerel 10708 . . . . 5 Rel ≤
44 dfrel2 6049 . . . . 5 (Rel ≤ ↔ ≤ = ≤ )
4543, 44mpbi 232 . . . 4 ≤ = ≤
46 isoeq2 7074 . . . 4 ( ≤ = ≤ → (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
4745, 46ax-mp 5 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
4839, 42, 473bitr3ri 304 . 2 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4938, 48syl6bbr 291 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  cdif 3936  cin 3938  wss 3939   × cxp 5556  ccnv 5557  Rel wrel 5563   Isom wiso 6359  *cxr 10677   < clt 10678  cle 10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-xr 10682  df-ltxr 10683  df-le 10684
This theorem is referenced by:  xrge0iifhmeo  31183
  Copyright terms: Public domain W3C validator