MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzaddcl Structured version   Visualization version   GIF version

Theorem gzaddcl 16261
Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzaddcl ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i])

Proof of Theorem gzaddcl
StepHypRef Expression
1 gzcn 16256 . . 3 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2 gzcn 16256 . . 3 (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ)
3 addcl 10607 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℂ)
5 readd 14473 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
61, 2, 5syl2an 595 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
7 elgz 16255 . . . . 5 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
87simp2bi 1138 . . . 4 (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ)
9 elgz 16255 . . . . 5 (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
109simp2bi 1138 . . . 4 (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ)
11 zaddcl 12010 . . . 4 (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ)
128, 10, 11syl2an 595 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ)
136, 12eqeltrd 2910 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) ∈ ℤ)
14 imadd 14481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
151, 2, 14syl2an 595 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
167simp3bi 1139 . . . 4 (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ)
179simp3bi 1139 . . . 4 (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ)
18 zaddcl 12010 . . . 4 (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ)
1916, 17, 18syl2an 595 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ)
2015, 19eqeltrd 2910 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) ∈ ℤ)
21 elgz 16255 . 2 ((𝐴 + 𝐵) ∈ ℤ[i] ↔ ((𝐴 + 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 + 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 + 𝐵)) ∈ ℤ))
224, 13, 20, 21syl3anbrc 1335 1 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i])
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523   + caddc 10528  cz 11969  cre 14444  cim 14445  ℤ[i]cgz 16253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-cj 14446  df-re 14447  df-im 14448  df-gz 16254
This theorem is referenced by:  gzreim  16263  gzsubcl  16264  mul4sqlem  16277  gzsubrg  20527
  Copyright terms: Public domain W3C validator