HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h0elsh Structured version   Visualization version   GIF version

Theorem h0elsh 27953
Description: The zero subspace is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
h0elsh 0S

Proof of Theorem h0elsh
StepHypRef Expression
1 h0elch 27952 . 2 0C
21chshii 27924 1 0S
Colors of variables: wff setvar class
Syntax hints:  wcel 1992   S csh 27625  0c0h 27632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961  ax-hilex 27696  ax-hfvadd 27697  ax-hvcom 27698  ax-hvass 27699  ax-hv0cl 27700  ax-hvaddid 27701  ax-hfvmul 27702  ax-hvmulid 27703  ax-hvmulass 27704  ax-hvdistr1 27705  ax-hvdistr2 27706  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his2 27780  ax-his3 27781  ax-his4 27782
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12121  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-top 20616  df-bases 20617  df-topon 20618  df-lm 20938  df-haus 21024  df-grpo 27187  df-gid 27188  df-ginv 27189  df-gdiv 27190  df-ablo 27239  df-vc 27254  df-nv 27287  df-va 27290  df-ba 27291  df-sm 27292  df-0v 27293  df-vs 27294  df-nmcv 27295  df-ims 27296  df-hnorm 27665  df-hvsub 27668  df-hlim 27669  df-sh 27904  df-ch 27918  df-ch0 27950
This theorem is referenced by:  hhssnvt  27962  choc0  28025  choc1  28026  shintcl  28029  omlsi  28103  pjoml  28135  shs0i  28148  shs00i  28149  spansn0  28240  span0  28241
  Copyright terms: Public domain W3C validator