Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hva Structured version   Visualization version   GIF version

Theorem h2hva 27680
 Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hva + = ( +𝑣𝑈)

Proof of Theorem h2hva
StepHypRef Expression
1 eqid 2621 . . . 4 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
21vafval 27307 . . 3 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 4893 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2695 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 27315 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1070 . . . . 5 norm ∈ V
103, 9op1st 7121 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6151 . . 3 (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (1st ‘⟨ + , · ⟩)
128simp1i 1068 . . . 4 + ∈ V
138simp2i 1069 . . . 4 · ∈ V
1412, 13op1st 7121 . . 3 (1st ‘⟨ + , · ⟩) = +
152, 11, 143eqtrri 2648 . 2 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6151 . 2 ( +𝑣𝑈) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2646 1 + = ( +𝑣𝑈)
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⟨cop 4154  ‘cfv 5847  1st c1st 7111  NrmCVeccnv 27288   +𝑣 cpv 27289   +ℎ cva 27626   ·ℎ csm 27627  normℎcno 27629 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fo 5853  df-fv 5855  df-oprab 6608  df-1st 7113  df-vc 27263  df-nv 27296  df-va 27299 This theorem is referenced by:  h2hvs  27683  axhfvadd-zf  27688  axhvcom-zf  27689  axhvass-zf  27690  axhvaddid-zf  27692  axhvdistr1-zf  27696  axhvdistr2-zf  27697  axhis2-zf  27701  hhva  27872
 Copyright terms: Public domain W3C validator