![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hadifp | Structured version Visualization version GIF version |
Description: The value of the adder sum is, if the first input is true, the biconditionality, and if the first input is false, the exclusive disjunction, of the other two inputs. (Contributed by BJ, 11-Aug-2020.) |
Ref | Expression |
---|---|
hadifp | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | had1 1582 | . 2 ⊢ (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
2 | had0 1583 | . 2 ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) | |
3 | 1, 2 | casesifp 1046 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 if-wif 1032 ⊻ wxo 1504 haddwhad 1572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-xor 1505 df-had 1573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |