MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfaddsub Structured version   Visualization version   GIF version

Theorem halfaddsub 11262
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
halfaddsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))

Proof of Theorem halfaddsub
StepHypRef Expression
1 ppncan 10320 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
213anidm13 1383 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
3 2times 11142 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
43adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
52, 4eqtr4d 2658 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
65oveq1d 6662 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = ((2 · 𝐴) / 2))
7 addcl 10015 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
8 subcl 10277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
9 2cnne0 11239 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
10 divdir 10707 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
119, 10mp3an3 1412 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
127, 8, 11syl2anc 693 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
13 2cn 11088 . . . . 5 2 ∈ ℂ
14 2ne0 11110 . . . . 5 2 ≠ 0
15 divcan3 10708 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
1613, 14, 15mp3an23 1415 . . . 4 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
1716adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐴) / 2) = 𝐴)
186, 12, 173eqtr3d 2663 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴)
19 pnncan 10319 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
20193anidm23 1384 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
21 2times 11142 . . . . . 6 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
2221adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
2320, 22eqtr4d 2658 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
2423oveq1d 6662 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = ((2 · 𝐵) / 2))
25 divsubdir 10718 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
269, 25mp3an3 1412 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
277, 8, 26syl2anc 693 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
28 divcan3 10708 . . . . 5 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
2913, 14, 28mp3an23 1415 . . . 4 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3029adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) / 2) = 𝐵)
3124, 27, 303eqtr3d 2663 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵)
3218, 31jca 554 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wne 2793  (class class class)co 6647  cc 9931  0cc0 9933   + caddc 9936   · cmul 9938  cmin 10263   / cdiv 10681  2c2 11067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-2 11076
This theorem is referenced by:  addsin  14894  subsin  14895  addcos  14898  subcos  14899  ioo2bl  22590  dcubic  24567  fourierdlem79  40171
  Copyright terms: Public domain W3C validator