MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfnq Structured version   Visualization version   GIF version

Theorem halfnq 9654
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
halfnq (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem halfnq
StepHypRef Expression
1 distrnq 9639 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q))))
2 distrnq 9639 . . . . . . . 8 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
3 1nq 9606 . . . . . . . . . . 11 1QQ
4 addclnq 9623 . . . . . . . . . . 11 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
53, 3, 4mp2an 703 . . . . . . . . . 10 (1Q +Q 1Q) ∈ Q
6 recidnq 9643 . . . . . . . . . 10 ((1Q +Q 1Q) ∈ Q → ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q)
75, 6ax-mp 5 . . . . . . . . 9 ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q
87, 7oveq12i 6539 . . . . . . . 8 (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
92, 8eqtri 2631 . . . . . . 7 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
109oveq1i 6537 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))
117oveq2i 6538 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q)
12 mulassnq 9637 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
13 mulcomnq 9631 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
1413oveq1i 6537 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
1512, 14eqtr3i 2633 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
16 recclnq 9644 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → (*Q‘(1Q +Q 1Q)) ∈ Q)
17 addclnq 9623 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
1816, 16, 17syl2anc 690 . . . . . . . 8 ((1Q +Q 1Q) ∈ Q → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
19 mulidnq 9641 . . . . . . . 8 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
205, 18, 19mp2b 10 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2111, 15, 203eqtr3i 2639 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2210, 21, 73eqtr3i 2639 . . . . 5 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) = 1Q
2322oveq2i 6538 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
241, 23eqtr3i 2633 . . 3 ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
25 mulidnq 9641 . . 3 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
2624, 25syl5eq 2655 . 2 (𝐴Q → ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴)
27 ovex 6555 . . 3 (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ V
28 oveq12 6536 . . . . 5 ((𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∧ 𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
2928anidms 674 . . . 4 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
3029eqeq1d 2611 . . 3 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3127, 30spcev 3272 . 2 (((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴 → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
3226, 31syl 17 1 (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wex 1694  wcel 1976  cfv 5790  (class class class)co 6527  Qcnq 9530  1Qc1q 9531   +Q cplq 9533   ·Q cmq 9534  *Qcrq 9535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-ni 9550  df-pli 9551  df-mi 9552  df-lti 9553  df-plpq 9586  df-mpq 9587  df-enq 9589  df-nq 9590  df-erq 9591  df-plq 9592  df-mq 9593  df-1nq 9594  df-rq 9595
This theorem is referenced by:  nsmallnq  9655
  Copyright terms: Public domain W3C validator