Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harinf Structured version   Visualization version   GIF version

Theorem harinf 38121
Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
harinf ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆))

Proof of Theorem harinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7237 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
21adantl 473 . . . 4 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On)
3 simplr 809 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin)
4 nnfi 8320 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ Fin)
54adantl 473 . . . . . . 7 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin)
6 sdomdom 8151 . . . . . . 7 (𝑆𝑥𝑆𝑥)
7 domfi 8348 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑆𝑥) → 𝑆 ∈ Fin)
87ex 449 . . . . . . 7 (𝑥 ∈ Fin → (𝑆𝑥𝑆 ∈ Fin))
95, 6, 8syl2im 40 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆𝑥𝑆 ∈ Fin))
103, 9mtod 189 . . . . 5 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆𝑥)
11 simpll 807 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆𝑉)
12 fidomtri 9029 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑆𝑉) → (𝑥𝑆 ↔ ¬ 𝑆𝑥))
135, 11, 12syl2anc 696 . . . . 5 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥𝑆 ↔ ¬ 𝑆𝑥))
1410, 13mpbird 247 . . . 4 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥𝑆)
15 elharval 8635 . . . 4 (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥𝑆))
162, 14, 15sylanbrc 701 . . 3 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆))
1716ex 449 . 2 ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆)))
1817ssrdv 3750 1 ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  wss 3715   class class class wbr 4804  Oncon0 5884  cfv 6049  ωcom 7231  cdom 8121  csdm 8122  Fincfn 8123  harchar 8628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-om 7232  df-wrecs 7577  df-recs 7638  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-oi 8582  df-har 8630  df-card 8975
This theorem is referenced by:  ttac  38123
  Copyright terms: Public domain W3C validator