MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Visualization version   GIF version

Theorem harmonicbnd4 24782
Description: The asymptotic behavior of Σ𝑚𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 12812 . . . . . 6 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12408 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 11104 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 14509 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
65recnd 10106 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
7 relogcl 24367 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
87recnd 10106 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
9 emre 24777 . . . . . 6 γ ∈ ℝ
109a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → γ ∈ ℝ)
1110recnd 10106 . . . 4 (𝐴 ∈ ℝ+ → γ ∈ ℂ)
126, 8, 11subsub4d 10461 . . 3 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))
1312fveq2d 6233 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
14 rpreccl 11895 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
1514rpred 11910 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
16 resubcl 10383 . . . . 5 ((γ ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (γ − (1 / 𝐴)) ∈ ℝ)
179, 15, 16sylancr 696 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ∈ ℝ)
18 rprege0 11885 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
19 flge0nn0 12661 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2018, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
21 nn0p1nn 11370 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
2220, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
2322nnrpd 11908 . . . . . 6 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
24 relogcl 24367 . . . . . 6 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
2523, 24syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
265, 25resubcld 10496 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
275, 7resubcld 10496 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∈ ℝ)
2822nnrecred 11104 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℝ)
29 fzfid 12812 . . . . . . . 8 (𝐴 ∈ ℝ+ → (1...((⌊‘𝐴) + 1)) ∈ Fin)
30 elfznn 12408 . . . . . . . . . 10 (𝑚 ∈ (1...((⌊‘𝐴) + 1)) → 𝑚 ∈ ℕ)
3130adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → 𝑚 ∈ ℕ)
3231nnrecred 11104 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℝ)
3329, 32fsumrecl 14509 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℝ)
3433, 25resubcld 10496 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
35 harmonicbnd 24775 . . . . . . . 8 (((⌊‘𝐴) + 1) ∈ ℕ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
3622, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
37 1re 10077 . . . . . . . . 9 1 ∈ ℝ
389, 37elicc2i 12277 . . . . . . . 8 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ 1))
3938simp2bi 1097 . . . . . . 7 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
4036, 39syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
41 rpre 11877 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
42 fllep1 12642 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
4341, 42syl 17 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
44 rpregt0 11884 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4522nnred 11073 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ)
4622nngt0d 11102 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < ((⌊‘𝐴) + 1))
47 lerec 10944 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (((⌊‘𝐴) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝐴) + 1))) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4844, 45, 46, 47syl12anc 1364 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4943, 48mpbid 222 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴))
5010, 28, 34, 15, 40, 49le2subd 10685 . . . . 5 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
5133recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℂ)
5225recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℂ)
5328recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℂ)
5451, 52, 53sub32d 10462 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))))
55 nnuz 11761 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5622, 55syl6eleq 2740 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ (ℤ‘1))
5732recnd 10106 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℂ)
58 oveq2 6698 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝐴) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝐴) + 1)))
5956, 57, 58fsumm1 14524 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6020nn0cnd 11391 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
61 ax-1cn 10032 . . . . . . . . . . . . . 14 1 ∈ ℂ
62 pncan 10325 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6360, 61, 62sylancl 695 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6463oveq2d 6706 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1...(((⌊‘𝐴) + 1) − 1)) = (1...(⌊‘𝐴)))
6564sumeq1d 14475 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6665oveq1d 6705 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6759, 66eqtrd 2685 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6867oveq1d 6705 . . . . . . . 8 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
696, 53pncand 10431 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7068, 69eqtrd 2685 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7170oveq1d 6705 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7254, 71eqtrd 2685 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7350, 72breqtrd 4711 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
74 logleb 24394 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ ((⌊‘𝐴) + 1) ∈ ℝ+) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7523, 74mpdan 703 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7643, 75mpbid 222 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
777, 25, 5, 76lesub2dd 10682 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7817, 26, 27, 73, 77letrd 10232 . . 3 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7927, 15resubcld 10496 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ∈ ℝ)
8015recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℂ)
816, 8, 80subsub4d 10461 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))))
827, 15readdcld 10107 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) + (1 / 𝐴)) ∈ ℝ)
83 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
8423, 83relogdivd 24417 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) = ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)))
85 rerpdivcl 11899 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8645, 85mpancom 704 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8737a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → 1 ∈ ℝ)
8887, 15readdcld 10107 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ)
8915reefcld 14862 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ)
9061a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 1 ∈ ℂ)
91 rpcnne0 11888 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
92 divdir 10748 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
9360, 90, 91, 92syl3anc 1366 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
94 reflcl 12637 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
9541, 94syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
96 rerpdivcl 11899 . . . . . . . . . . . . . . 15 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
9795, 96mpancom 704 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
98 flle 12640 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
9941, 98syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
100 rpcn 11879 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
101100mulid1d 10095 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (𝐴 · 1) = 𝐴)
10299, 101breqtrrd 4713 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ (𝐴 · 1))
103 ledivmul 10937 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
10495, 87, 44, 103syl3anc 1366 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
105102, 104mpbird 247 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ≤ 1)
10697, 87, 15, 105leadd1dd 10679 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)) ≤ (1 + (1 / 𝐴)))
10793, 106eqbrtrd 4707 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (1 + (1 / 𝐴)))
108 efgt1p 14889 . . . . . . . . . . . . . 14 ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10914, 108syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
11088, 89, 109ltled 10223 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴)))
11186, 88, 89, 107, 110letrd 10232 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)))
112 rpdivcl 11894 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ+𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11323, 112mpancom 704 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11415rpefcld 14879 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ+)
115113, 114logled 24418 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)) ↔ (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴)))))
116111, 115mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴))))
11715relogefd 24419 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(exp‘(1 / 𝐴))) = (1 / 𝐴))
118116, 117breqtrd 4711 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (1 / 𝐴))
11984, 118eqbrtrrd 4709 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴))
12025, 7, 15lesubadd2d 10664 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴) ↔ (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴))))
121119, 120mpbid 222 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴)))
12225, 82, 5, 121lesub2dd 10682 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
12381, 122eqbrtrd 4707 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
124 harmonicbnd3 24779 . . . . . . 7 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
12520, 124syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
126 0re 10078 . . . . . . . 8 0 ∈ ℝ
127126, 9elicc2i 12277 . . . . . . 7 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
128127simp3bi 1098 . . . . . 6 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
129125, 128syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
13079, 26, 10, 123, 129letrd 10232 . . . 4 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ)
13127, 15, 10lesubaddd 10662 . . . 4 (𝐴 ∈ ℝ+ → (((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ ↔ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴))))
132130, 131mpbid 222 . . 3 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))
13327, 10, 15absdifled 14217 . . 3 (𝐴 ∈ ℝ+ → ((abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴) ↔ ((γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))))
13478, 132, 133mpbir2and 977 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴))
13513, 134eqbrtrrd 4709 1 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cuz 11725  +crp 11870  [,]cicc 12216  ...cfz 12364  cfl 12631  abscabs 14018  Σcsu 14460  expce 14836  logclog 24346  γcem 24763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-em 24764
This theorem is referenced by:  mulogsumlem  25265  mulog2sumlem1  25268
  Copyright terms: Public domain W3C validator