![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash1to3 | Structured version Visualization version GIF version |
Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
Ref | Expression |
---|---|
hash1to3 | ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13185 | . . 3 ⊢ (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0) | |
2 | nn01to3 11819 | . . 3 ⊢ (((#‘𝑉) ∈ ℕ0 ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 2 ∨ (#‘𝑉) = 3)) | |
3 | 1, 2 | syl3an1 1399 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 2 ∨ (#‘𝑉) = 3)) |
4 | hash1snb 13245 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((#‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | |
5 | 4 | biimpa 500 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) |
6 | 3mix1 1250 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑎} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
7 | 6 | 2eximi 1803 | . . . . . . . . . 10 ⊢ (∃𝑏∃𝑐 𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
8 | 7 | 19.23bi 2099 | . . . . . . . . 9 ⊢ (∃𝑐 𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
9 | 8 | 19.23bi 2099 | . . . . . . . 8 ⊢ (𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
10 | 9 | eximi 1802 | . . . . . . 7 ⊢ (∃𝑎 𝑉 = {𝑎} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
11 | 5, 10 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
12 | 11 | expcom 450 | . . . . 5 ⊢ ((#‘𝑉) = 1 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
13 | hash2pr 13289 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 2) → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | |
14 | 3mix2 1251 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
15 | 14 | eximi 1802 | . . . . . . . . 9 ⊢ (∃𝑐 𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
16 | 15 | 19.23bi 2099 | . . . . . . . 8 ⊢ (𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
17 | 16 | 2eximi 1803 | . . . . . . 7 ⊢ (∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
18 | 13, 17 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 2) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
19 | 18 | expcom 450 | . . . . 5 ⊢ ((#‘𝑉) = 2 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
20 | hash3tr 13310 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) | |
21 | 3mix3 1252 | . . . . . . . . 9 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
22 | 21 | eximi 1802 | . . . . . . . 8 ⊢ (∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
23 | 22 | 2eximi 1803 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
24 | 20, 23 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
25 | 24 | expcom 450 | . . . . 5 ⊢ ((#‘𝑉) = 3 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
26 | 12, 19, 25 | 3jaoi 1431 | . . . 4 ⊢ (((#‘𝑉) = 1 ∨ (#‘𝑉) = 2 ∨ (#‘𝑉) = 3) → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
27 | 26 | com12 32 | . . 3 ⊢ (𝑉 ∈ Fin → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 2 ∨ (#‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
28 | 27 | 3ad2ant1 1102 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 2 ∨ (#‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
29 | 3, 28 | mpd 15 | 1 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∨ w3o 1053 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {csn 4210 {cpr 4212 {ctp 4214 class class class wbr 4685 ‘cfv 5926 Fincfn 7997 1c1 9975 ≤ cle 10113 2c2 11108 3c3 11109 ℕ0cn0 11330 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-3o 7607 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: friendship 27386 |
Copyright terms: Public domain | W3C validator |