MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   GIF version

Theorem hash2pwpr 13837
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4834 . . . . 5 𝒫 {𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})
21eleq2i 2906 . . . 4 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}))
3 elun 4127 . . . 4 (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
42, 3bitri 277 . . 3 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
5 fveq2 6672 . . . . . . 7 (𝑃 = ∅ → (♯‘𝑃) = (♯‘∅))
6 hash0 13731 . . . . . . . . 9 (♯‘∅) = 0
76eqeq2i 2836 . . . . . . . 8 ((♯‘𝑃) = (♯‘∅) ↔ (♯‘𝑃) = 0)
8 eqeq1 2827 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 ↔ 0 = 2))
9 0ne2 11847 . . . . . . . . . 10 0 ≠ 2
10 eqneqall 3029 . . . . . . . . . 10 (0 = 2 → (0 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
119, 10mpi 20 . . . . . . . . 9 (0 = 2 → 𝑃 = {𝑋, 𝑌})
128, 11syl6bi 255 . . . . . . . 8 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
137, 12sylbi 219 . . . . . . 7 ((♯‘𝑃) = (♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
145, 13syl 17 . . . . . 6 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
15 hashsng 13733 . . . . . . . 8 (𝑋 ∈ V → (♯‘{𝑋}) = 1)
16 fveq2 6672 . . . . . . . . . . 11 ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃))
1716eqcoms 2831 . . . . . . . . . 10 (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃))
1817eqeq1d 2825 . . . . . . . . 9 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1))
19 eqeq1 2827 . . . . . . . . . 10 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 ↔ 1 = 2))
20 1ne2 11848 . . . . . . . . . . 11 1 ≠ 2
21 eqneqall 3029 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
2220, 21mpi 20 . . . . . . . . . 10 (1 = 2 → 𝑃 = {𝑋, 𝑌})
2319, 22syl6bi 255 . . . . . . . . 9 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
2418, 23syl6bi 255 . . . . . . . 8 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
2515, 24syl5com 31 . . . . . . 7 (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
26 snprc 4655 . . . . . . . 8 𝑋 ∈ V ↔ {𝑋} = ∅)
27 eqeq2 2835 . . . . . . . . 9 ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅))
285, 6syl6eq 2874 . . . . . . . . . . 11 (𝑃 = ∅ → (♯‘𝑃) = 0)
2928eqeq1d 2825 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ 0 = 2))
3029, 11syl6bi 255 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3127, 30syl6bi 255 . . . . . . . 8 ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3226, 31sylbi 219 . . . . . . 7 𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3325, 32pm2.61i 184 . . . . . 6 (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3414, 33jaoi 853 . . . . 5 ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
35 hashsng 13733 . . . . . . . 8 (𝑌 ∈ V → (♯‘{𝑌}) = 1)
36 fveq2 6672 . . . . . . . . . . 11 ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃))
3736eqcoms 2831 . . . . . . . . . 10 (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃))
3837eqeq1d 2825 . . . . . . . . 9 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1))
3938, 23syl6bi 255 . . . . . . . 8 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4035, 39syl5com 31 . . . . . . 7 (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
41 snprc 4655 . . . . . . . 8 𝑌 ∈ V ↔ {𝑌} = ∅)
42 eqeq2 2835 . . . . . . . . 9 ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅))
435eqeq1d 2825 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ (♯‘∅) = 2))
446eqeq1i 2828 . . . . . . . . . . 11 ((♯‘∅) = 2 ↔ 0 = 2)
4544, 11sylbi 219 . . . . . . . . . 10 ((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌})
4643, 45syl6bi 255 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
4742, 46syl6bi 255 . . . . . . . 8 ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4841, 47sylbi 219 . . . . . . 7 𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4940, 48pm2.61i 184 . . . . . 6 (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
50 ax-1 6 . . . . . 6 (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5149, 50jaoi 853 . . . . 5 ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5234, 51jaoi 853 . . . 4 (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
53 elpri 4591 . . . . 5 (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋}))
54 elpri 4591 . . . . 5 (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))
5553, 54orim12i 905 . . . 4 ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})))
5652, 55syl11 33 . . 3 ((♯‘𝑃) = 2 → ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌}))
574, 56syl5bi 244 . 2 ((♯‘𝑃) = 2 → (𝑃 ∈ 𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌}))
5857imp 409 1 (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cun 3936  c0 4293  𝒫 cpw 4541  {csn 4569  {cpr 4571  cfv 6357  0cc0 10539  1c1 10540  2c2 11695  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  pr2pwpr  13840
  Copyright terms: Public domain W3C validator