MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashen Structured version   Visualization version   GIF version

Theorem hashen 13710
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashen ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . 4 ((♯‘𝐴) = (♯‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)))
2 eqid 2823 . . . . . 6 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32hashginv 13697 . . . . 5 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (card‘𝐴))
42hashginv 13697 . . . . 5 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) = (card‘𝐵))
53, 4eqeqan12d 2840 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) ↔ (card‘𝐴) = (card‘𝐵)))
61, 5syl5ib 246 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) → (card‘𝐴) = (card‘𝐵)))
7 fveq2 6672 . . . 4 ((card‘𝐴) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
82hashgval 13696 . . . . 5 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
92hashgval 13696 . . . . 5 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
108, 9eqeqan12d 2840 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ (♯‘𝐴) = (♯‘𝐵)))
117, 10syl5ib 246 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) → (♯‘𝐴) = (♯‘𝐵)))
126, 11impbid 214 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ (card‘𝐴) = (card‘𝐵)))
13 finnum 9379 . . 3 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
14 finnum 9379 . . 3 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
15 carden2 9418 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
1613, 14, 15syl2an 597 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
1712, 16bitrd 281 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  cres 5559  cfv 6357  (class class class)co 7158  ωcom 7582  reccrdg 8047  cen 8508  Fincfn 8511  cardccrd 9366  0cc0 10539  1c1 10540   + caddc 10542  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-hash 13694
This theorem is referenced by:  hasheni  13711  hasheqf1o  13712  isfinite4  13726  hasheq0  13727  hashsng  13733  hashen1  13734  hashsdom  13745  hash1snb  13783  hashxplem  13797  hashmap  13799  hashpw  13800  hashbclem  13813  phphashd  13827  hash2pr  13830  pr2pwpr  13840  hash3tr  13851  isercolllem2  15024  isercoll  15026  summolem3  15073  mertenslem1  15242  prodmolem3  15289  bpolylem  15404  hashdvds  16114  crth  16117  phimullem  16118  eulerth  16122  4sqlem11  16293  lagsubg2  18343  dfod2  18693  sylow1lem2  18726  sylow2alem2  18745  sylow2a  18746  slwhash  18751  sylow2  18753  sylow3lem1  18754  cyggenod  19005  lt6abl  19017  ablfac1c  19195  ablfac1eu  19197  ablfaclem3  19211  fta1blem  24764  vieta1  24903  isppw  25693  clwlknon2num  28149  numclwlk1lem2  28151  fisshasheq  32354  derangen2  32423  subfacp1lem3  32431  subfacp1lem5  32433  erdsze2lem1  32452  erdsze2lem2  32453  poimirlem9  34903  poimirlem25  34919  poimirlem26  34920  poimirlem27  34921  poimirlem28  34922  eldioph2lem1  39364  frlmpwfi  39705  isnumbasgrplem3  39712  idomsubgmo  39805
  Copyright terms: Public domain W3C validator