MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheni Structured version   Visualization version   GIF version

Theorem hasheni 13702
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hasheni (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))

Proof of Theorem hasheni
StepHypRef Expression
1 simpl 485 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
2 enfii 8729 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
32ancoms 461 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 hashen 13701 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
53, 4sylancom 590 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
61, 5mpbird 259 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
7 relen 8508 . . . . 5 Rel ≈
87brrelex1i 5603 . . . 4 (𝐴𝐵𝐴 ∈ V)
9 enfi 8728 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
109notbid 320 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin))
1110biimpar 480 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐴 ∈ Fin)
12 hashinf 13689 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
138, 11, 12syl2an2r 683 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = +∞)
147brrelex2i 5604 . . . 4 (𝐴𝐵𝐵 ∈ V)
15 hashinf 13689 . . . 4 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1614, 15sylan 582 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1713, 16eqtr4d 2859 . 2 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
186, 17pm2.61dan 811 1 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3495   class class class wbr 5059  cfv 6350  cen 8500  Fincfn 8503  +∞cpnf 10666  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-hash 13685
This theorem is referenced by:  hashen1  13725  hashfn  13730  hashfz  13782  hashf1lem2  13808  ishashinf  13815  hashgcdeq  16120  ramub2  16344  ram0  16352  odhash  18693  odhash2  18694  odngen  18696  lsmhash  18825  znhash  20699  znunithash  20705  cyggic  20713  birthdaylem2  25524  lgsquadlem1  25950  lgsquadlem2  25951  lgsquadlem3  25952  wlknwwlksneqs  27662  numclwwlk1  28134  dimval  30996  dimvalfi  30997  dimkerim  31018  fedgmul  31022  eulerpart  31635  ballotlemro  31775  ballotlemfrc  31779  ballotlem8  31789  rp-isfinite5  39876
  Copyright terms: Public domain W3C validator