MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheqf1oi Structured version   Visualization version   GIF version

Theorem hasheqf1oi 13700
Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hasheqf1oi (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem hasheqf1oi
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hasheqf1o 13697 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
21biimprd 249 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
32a1d 25 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
4 fiinfnf1o 13698 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
54pm2.21d 121 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
65a1d 25 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
7 fiinfnf1o 13698 . . . 4 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 19.41v 1941 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉))
9 f1orel 6611 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
109adantr 481 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → Rel 𝑓)
11 f1ocnvb 6621 . . . . . . . . . . . 12 (Rel 𝑓 → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
1210, 11syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
13 f1of 6608 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
14 fex 6980 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝐴𝑉) → 𝑓 ∈ V)
1513, 14sylan 580 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → 𝑓 ∈ V)
16 cnvexg 7618 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
17 f1oeq1 6597 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
1817spcegv 3594 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
1915, 16, 183syl 18 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
20 pm2.24 124 . . . . . . . . . . . 12 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2119, 20syl6 35 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2212, 21sylbid 241 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2322com12 32 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2423anabsi5 665 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2524exlimiv 1922 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
268, 25sylbir 236 . . . . . 6 ((∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2726ex 413 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴𝑉 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2827com13 88 . . . 4 (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
297, 28syl 17 . . 3 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
3029ancoms 459 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
31 hashinf 13683 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
3231expcom 414 . . . . . . . . 9 𝐴 ∈ Fin → (𝐴𝑉 → (♯‘𝐴) = +∞))
3332adantr 481 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (♯‘𝐴) = +∞))
3433imp 407 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (♯‘𝐴) = +∞)
3534adantr 481 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = +∞)
36 simpr 485 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → 𝐴𝑉)
37 f1ofo 6615 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
38 focdmex 13699 . . . . . . . 8 ((𝐴𝑉𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
3936, 37, 38syl2an 595 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
40 hashinf 13683 . . . . . . . . 9 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
4140expcom 414 . . . . . . . 8 𝐵 ∈ Fin → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4241ad3antlr 727 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4339, 42mpd 15 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐵) = +∞)
4435, 43eqtr4d 2856 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
4544ex 413 . . . 4 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4645exlimdv 1925 . . 3 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4746ex 413 . 2 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
483, 6, 30, 474cases 1032 1 (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  Vcvv 3492  ccnv 5547  Rel wrel 5553  wf 6344  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  Fincfn 8497  +∞cpnf 10660  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-hash 13679
This theorem is referenced by:  hashf1rn  13701  hasheqf1od  13702  2lgslem1  25897  nbedgusgr  27081  rusgrnumwrdl2  27295  wwlksnexthasheq  27608  rusgrnumwlkg  27683  numclwwlkqhash  28081  bj-finsumval0  34455
  Copyright terms: Public domain W3C validator