![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfac | Structured version Visualization version GIF version |
Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
hashfac | ⊢ (𝐴 ∈ Fin → (#‘{𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = (!‘(#‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashf1 13279 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (#‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐴}) = ((!‘(#‘𝐴)) · ((#‘𝐴)C(#‘𝐴)))) | |
2 | 1 | anidms 678 | . 2 ⊢ (𝐴 ∈ Fin → (#‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐴}) = ((!‘(#‘𝐴)) · ((#‘𝐴)C(#‘𝐴)))) |
3 | enrefg 8029 | . . . . 5 ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | |
4 | f1finf1o 8228 | . . . . 5 ⊢ ((𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → (𝑓:𝐴–1-1→𝐴 ↔ 𝑓:𝐴–1-1-onto→𝐴)) | |
5 | 3, 4 | mpancom 704 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1→𝐴 ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
6 | 5 | abbidv 2770 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑓 ∣ 𝑓:𝐴–1-1→𝐴} = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) |
7 | 6 | fveq2d 6233 | . 2 ⊢ (𝐴 ∈ Fin → (#‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐴}) = (#‘{𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) |
8 | hashcl 13185 | . . . . 5 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0) | |
9 | bcnn 13139 | . . . . 5 ⊢ ((#‘𝐴) ∈ ℕ0 → ((#‘𝐴)C(#‘𝐴)) = 1) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → ((#‘𝐴)C(#‘𝐴)) = 1) |
11 | 10 | oveq2d 6706 | . . 3 ⊢ (𝐴 ∈ Fin → ((!‘(#‘𝐴)) · ((#‘𝐴)C(#‘𝐴))) = ((!‘(#‘𝐴)) · 1)) |
12 | faccl 13110 | . . . . . 6 ⊢ ((#‘𝐴) ∈ ℕ0 → (!‘(#‘𝐴)) ∈ ℕ) | |
13 | 8, 12 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (!‘(#‘𝐴)) ∈ ℕ) |
14 | 13 | nncnd 11074 | . . . 4 ⊢ (𝐴 ∈ Fin → (!‘(#‘𝐴)) ∈ ℂ) |
15 | 14 | mulid1d 10095 | . . 3 ⊢ (𝐴 ∈ Fin → ((!‘(#‘𝐴)) · 1) = (!‘(#‘𝐴))) |
16 | 11, 15 | eqtrd 2685 | . 2 ⊢ (𝐴 ∈ Fin → ((!‘(#‘𝐴)) · ((#‘𝐴)C(#‘𝐴))) = (!‘(#‘𝐴))) |
17 | 2, 7, 16 | 3eqtr3d 2693 | 1 ⊢ (𝐴 ∈ Fin → (#‘{𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = (!‘(#‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cab 2637 class class class wbr 4685 –1-1→wf1 5923 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 ≈ cen 7994 Fincfn 7997 1c1 9975 · cmul 9979 ℕcn 11058 ℕ0cn0 11330 !cfa 13100 Ccbc 13129 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-seq 12842 df-fac 13101 df-bc 13130 df-hash 13158 |
This theorem is referenced by: symghash 17851 subfaclefac 31284 poimirlem9 33548 |
Copyright terms: Public domain | W3C validator |