MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgcdlem Structured version   Visualization version   GIF version

Theorem hashgcdlem 16113
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
hashgcdlem.b 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
hashgcdlem.f 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
Assertion
Ref Expression
hashgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑧,𝑀   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁,𝑦   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem hashgcdlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
2 oveq1 7152 . . . . 5 (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁)))
32eqeq1d 2820 . . . 4 (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1))
4 hashgcdlem.a . . . 4 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
53, 4elrab2 3680 . . 3 (𝑥𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1))
6 elfzonn0 13070 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0)
76ad2antrl 724 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0)
8 nnnn0 11892 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant2 1126 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℕ0)
109adantr 481 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈ ℕ0)
117, 10nn0mulcld 11948 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ ℕ0)
12 simpl1 1183 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ)
13 elfzolt2 13035 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁))
1413ad2antrl 724 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁))
15 elfzoelz 13026 . . . . . . . . 9 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ)
1615ad2antrl 724 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ)
1716zred 12075 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ)
18 nnre 11633 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
19183ad2ant1 1125 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
2019adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ)
21 nnre 11633 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
22 nngt0 11656 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
2321, 22jca 512 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
24233ad2ant2 1126 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2524adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
26 ltmuldiv 11501 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2717, 20, 25, 26syl3anc 1363 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2814, 27mpbird 258 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀)
29 elfzo0 13066 . . . . 5 ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀))
3011, 12, 28, 29syl3anbrc 1335 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀))
31 nncn 11634 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
32313ad2ant1 1125 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℂ)
33 nncn 11634 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
34333ad2ant2 1126 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℂ)
35 nnne0 11659 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
36353ad2ant2 1126 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ≠ 0)
3732, 34, 36divcan1d 11405 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3837adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3938eqcomd 2824 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁))
4039oveq2d 7161 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)))
41 nndivdvds 15604 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4241biimp3a 1460 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
4342nnzd 12074 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
4443adantr 481 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ)
45 mulgcdr 15886 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
4616, 44, 10, 45syl3anc 1363 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
47 simprr 769 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1)
4847oveq1d 7160 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁))
4934mulid2d 10647 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (1 · 𝑁) = 𝑁)
5049adantr 481 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁)
5148, 50eqtrd 2853 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁)
5240, 46, 513eqtrd 2857 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)
53 oveq1 7152 . . . . . 6 (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀))
5453eqeq1d 2820 . . . . 5 (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
55 hashgcdlem.b . . . . 5 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
5654, 55elrab2 3680 . . . 4 ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
5730, 52, 56sylanbrc 583 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵)
585, 57sylan2b 593 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑥𝐴) → (𝑥 · 𝑁) ∈ 𝐵)
59 oveq1 7152 . . . . 5 (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀))
6059eqeq1d 2820 . . . 4 (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁))
6160, 55elrab2 3680 . . 3 (𝑤𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁))
62 simprr 769 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁)
63 elfzoelz 13026 . . . . . . . . . . 11 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ)
6463ad2antrl 724 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ)
65 simpl1 1183 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ)
6665nnzd 12074 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
67 gcddvds 15840 . . . . . . . . . 10 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6864, 66, 67syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6968simpld 495 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤)
7062, 69eqbrtrrd 5081 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑤)
71 nnz 11992 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
72713ad2ant2 1126 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
7372adantr 481 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ)
7436adantr 481 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0)
75 dvdsval2 15598 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7673, 74, 64, 75syl3anc 1363 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7770, 76mpbid 233 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ)
78 elfzofz 13041 . . . . . . . . 9 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
7978ad2antrl 724 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀))
80 elfznn0 12988 . . . . . . . 8 (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0)
81 nn0re 11894 . . . . . . . . 9 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
82 nn0ge0 11910 . . . . . . . . 9 (𝑤 ∈ ℕ0 → 0 ≤ 𝑤)
8381, 82jca 512 . . . . . . . 8 (𝑤 ∈ ℕ0 → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8479, 80, 833syl 18 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8524adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
86 divge0 11497 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 ≤ 𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁))
8784, 85, 86syl2anc 584 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁))
88 elnn0z 11982 . . . . . 6 ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁)))
8977, 87, 88sylanbrc 583 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℕ0)
9042adantr 481 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ)
91 elfzolt2 13035 . . . . . . 7 (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀)
9291ad2antrl 724 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀)
9364zred 12075 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ)
9419adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ)
95 ltdiv1 11492 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9693, 94, 85, 95syl3anc 1363 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9792, 96mpbid 233 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁))
98 elfzo0 13066 . . . . 5 ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9989, 90, 97, 98syl3anbrc 1335 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)))
10062oveq1d 7160 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁))
101 simpl2 1184 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ)
102 simpl3 1185 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
103 gcddiv 15887 . . . . . 6 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁𝑤𝑁𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10464, 66, 101, 70, 102, 103syl32anc 1370 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10534, 36dividd 11402 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 / 𝑁) = 1)
106105adantr 481 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1)
107100, 104, 1063eqtr3d 2861 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)
108 oveq1 7152 . . . . . 6 (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
109108eqeq1d 2820 . . . . 5 (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
110109, 4elrab2 3680 . . . 4 ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
11199, 107, 110sylanbrc 583 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴)
11261, 111sylan2b 593 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑤𝐵) → (𝑤 / 𝑁) ∈ 𝐴)
1135simplbi 498 . . . 4 (𝑥𝐴𝑥 ∈ (0..^(𝑀 / 𝑁)))
11461simplbi 498 . . . 4 (𝑤𝐵𝑤 ∈ (0..^𝑀))
115113, 114anim12i 612 . . 3 ((𝑥𝐴𝑤𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀)))
11663ad2antll 725 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ)
117116zcnd 12076 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ)
11834adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ)
11936adantr 481 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ≠ 0)
120117, 118, 119divcan1d 11405 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤)
121120eqcomd 2824 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁))
122 oveq1 7152 . . . . . 6 (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁))
123122eqeq2d 2829 . . . . 5 (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁)))
124121, 123syl5ibrcom 248 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁)))
12515ad2antrl 724 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ)
126125zcnd 12076 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ)
127126, 118, 119divcan4d 11410 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥)
128127eqcomd 2824 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁))
129 oveq1 7152 . . . . . 6 (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁))
130129eqeq2d 2829 . . . . 5 (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁)))
131128, 130syl5ibrcom 248 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁)))
132124, 131impbid 213 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
133115, 132sylan2 592 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥𝐴𝑤𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
1341, 58, 112, 133f1o2d 7388 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  {crab 3139   class class class wbr 5057  cmpt 5137  1-1-ontowf1o 6347  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  ...cfz 12880  ..^cfzo 13021  cdvds 15595   gcd cgcd 15831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832
This theorem is referenced by:  hashgcdeq  16114
  Copyright terms: Public domain W3C validator