MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2difr Structured version   Visualization version   GIF version

Theorem hashge2el2difr 13827
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020.)
Assertion
Ref Expression
hashge2el2difr ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2difr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hashv01gt1 13693 . . 3 (𝐷𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)))
2 hasheq0 13712 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅))
3 rexeq 3404 . . . . . . 7 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦))
4 rex0 4314 . . . . . . . 8 ¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦
5 pm2.21 123 . . . . . . . 8 (¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
64, 5mp1i 13 . . . . . . 7 (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
73, 6sylbid 241 . . . . . 6 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
82, 7syl6bi 254 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 0 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
98com12 32 . . . 4 ((♯‘𝐷) = 0 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
10 hash1snb 13768 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧}))
11 rexeq 3404 . . . . . . . . . 10 (𝐷 = {𝑧} → (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥𝑦))
1211rexeqbi1dv 3402 . . . . . . . . 9 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦))
13 vex 3495 . . . . . . . . . . 11 𝑧 ∈ V
14 neeq1 3075 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
1514rexbidv 3294 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦))
1613, 15rexsn 4612 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦)
17 neeq2 3076 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
1813, 17rexsn 4612 . . . . . . . . . 10 (∃𝑦 ∈ {𝑧}𝑧𝑦𝑧𝑧)
1916, 18bitri 276 . . . . . . . . 9 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦𝑧𝑧)
2012, 19syl6bb 288 . . . . . . . 8 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦𝑧𝑧))
21 equid 2010 . . . . . . . . 9 𝑧 = 𝑧
22 eqneqall 3024 . . . . . . . . 9 (𝑧 = 𝑧 → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2321, 22mp1i 13 . . . . . . . 8 (𝐷 = {𝑧} → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2420, 23sylbid 241 . . . . . . 7 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2524exlimiv 1922 . . . . . 6 (∃𝑧 𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2610, 25syl6bi 254 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 1 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
2726com12 32 . . . 4 ((♯‘𝐷) = 1 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
28 hashnn0pnf 13690 . . . . . . . 8 (𝐷𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞))
29 1z 12000 . . . . . . . . . . 11 1 ∈ ℤ
30 nn0z 11993 . . . . . . . . . . 11 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℤ)
31 zltp1le 12020 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷)))
3231biimpd 230 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
3329, 30, 32sylancr 587 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
34 df-2 11688 . . . . . . . . . . 11 2 = (1 + 1)
3534breq1i 5064 . . . . . . . . . 10 (2 ≤ (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷))
3633, 35syl6ibr 253 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
37 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
3837rexri 10687 . . . . . . . . . . . 12 2 ∈ ℝ*
39 pnfge 12513 . . . . . . . . . . . 12 (2 ∈ ℝ* → 2 ≤ +∞)
4038, 39mp1i 13 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → 2 ≤ +∞)
41 breq2 5061 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞))
4240, 41mpbird 258 . . . . . . . . . 10 ((♯‘𝐷) = +∞ → 2 ≤ (♯‘𝐷))
4342a1d 25 . . . . . . . . 9 ((♯‘𝐷) = +∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4436, 43jaoi 851 . . . . . . . 8 (((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4528, 44syl 17 . . . . . . 7 (𝐷𝑉 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4645impcom 408 . . . . . 6 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → 2 ≤ (♯‘𝐷))
4746a1d 25 . . . . 5 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
4847ex 413 . . . 4 (1 < (♯‘𝐷) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
499, 27, 483jaoi 1419 . . 3 (((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
501, 49mpcom 38 . 2 (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
5150imp 407 1 ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3o 1078   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  c0 4288  {csn 4557   class class class wbr 5057  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  2c2 11680  0cn0 11885  cz 11969  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  hashge2el2difb  13828  hashdmpropge2  13829
  Copyright terms: Public domain W3C validator