MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Visualization version   GIF version

Theorem hashgt12el 13771
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 13716 . . . 4 (♯‘∅) = 0
2 fveq2 6663 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2syl5eqr 2867 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5061 . . . . . . . 8 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 230 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2826 . . . . . 6 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11151 . . . . . . 7 0 ≤ 1
8 0re 10631 . . . . . . . . 9 0 ∈ ℝ
9 1re 10629 . . . . . . . . 9 1 ∈ ℝ
108, 9lenlti 10748 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . . 8 (¬ 1 < 0 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1210, 11sylbi 218 . . . . . . 7 (0 ≤ 1 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
137, 12ax-mp 5 . . . . . 6 (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
146, 13syl6com 37 . . . . 5 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1514adantl 482 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1615com12 32 . . 3 (0 = (♯‘𝑉) → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
173, 16syl 17 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
18 df-ne 3014 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
19 necom 3066 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
2018, 19bitr3i 278 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
21 ralnex 3233 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
22 ralnex 3233 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ¬ ∃𝑏𝑉 𝑎𝑏)
23 nne 3017 . . . . . . . . . . . 12 𝑎𝑏𝑎 = 𝑏)
24 equcom 2016 . . . . . . . . . . . 12 (𝑎 = 𝑏𝑏 = 𝑎)
2523, 24bitri 276 . . . . . . . . . . 11 𝑎𝑏𝑏 = 𝑎)
2625ralbii 3162 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2722, 26bitr3i 278 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2827ralbii 3162 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
2921, 28bitr3i 278 . . . . . . 7 (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
30 eqsn 4754 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3130adantl 482 . . . . . . . . . . 11 ((𝑉𝑊𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3231bicomd 224 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝑎𝑉 = {𝑎}))
3332ralbidv 3194 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 ↔ ∀𝑎𝑉 𝑉 = {𝑎}))
34 fveq2 6663 . . . . . . . . . . . . 13 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
35 hashsnle1 13766 . . . . . . . . . . . . 13 (♯‘{𝑎}) ≤ 1
3634, 35eqbrtrdi 5096 . . . . . . . . . . . 12 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)
3736a1i 11 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
3837reximdva0 4309 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → ∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
39 r19.36v 3339 . . . . . . . . . 10 (∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4038, 39syl 17 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4133, 40sylbid 241 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1))
42 hashxrcl 13706 . . . . . . . . . 10 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
4342adantr 481 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
44 1xr 10688 . . . . . . . . 9 1 ∈ ℝ*
45 xrlenlt 10694 . . . . . . . . 9 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4643, 44, 45sylancl 586 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4741, 46sylibd 240 . . . . . . 7 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉)))
4829, 47syl5bi 243 . . . . . 6 ((𝑉𝑊𝑉 ≠ ∅) → (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 → ¬ 1 < (♯‘𝑉)))
4948con4d 115 . . . . 5 ((𝑉𝑊𝑉 ≠ ∅) → (1 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5049impancom 452 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5150com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5220, 51sylbi 218 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5317, 52pm2.61i 183 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  c0 4288  {csn 4557   class class class wbr 5057  cfv 6348  0cc0 10525  1c1 10526  *cxr 10662   < clt 10663  cle 10664  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  hashgt23el  13773  ring1ne0  19270  frgrwopreglem5  28027  frgrwopreglem5ALT  28028
  Copyright terms: Public domain W3C validator