MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el2 Structured version   Visualization version   GIF version

Theorem hashgt12el2 13249
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el2 ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Distinct variable groups:   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el2
StepHypRef Expression
1 hash0 13196 . . . 4 (#‘∅) = 0
2 fveq2 6229 . . . 4 (∅ = 𝑉 → (#‘∅) = (#‘𝑉))
31, 2syl5eqr 2699 . . 3 (∅ = 𝑉 → 0 = (#‘𝑉))
4 breq2 4689 . . . . . . 7 ((#‘𝑉) = 0 → (1 < (#‘𝑉) ↔ 1 < 0))
54biimpd 219 . . . . . 6 ((#‘𝑉) = 0 → (1 < (#‘𝑉) → 1 < 0))
65eqcoms 2659 . . . . 5 (0 = (#‘𝑉) → (1 < (#‘𝑉) → 1 < 0))
7 0le1 10589 . . . . . 6 0 ≤ 1
8 0re 10078 . . . . . . . 8 0 ∈ ℝ
9 1re 10077 . . . . . . . 8 1 ∈ ℝ
108, 9lenlti 10195 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 120 . . . . . . 7 (¬ 1 < 0 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
1210, 11sylbi 207 . . . . . 6 (0 ≤ 1 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
137, 12ax-mp 5 . . . . 5 (1 < 0 → ∃𝑏𝑉 𝐴𝑏)
146, 13syl6com 37 . . . 4 (1 < (#‘𝑉) → (0 = (#‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
15143ad2ant2 1103 . . 3 ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → (0 = (#‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
163, 15syl5com 31 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
17 df-ne 2824 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
18 necom 2876 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
1917, 18bitr3i 266 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
20 ralnex 3021 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ¬ ∃𝑏𝑉 𝐴𝑏)
21 nne 2827 . . . . . . . . . . . 12 𝐴𝑏𝐴 = 𝑏)
22 eqcom 2658 . . . . . . . . . . . 12 (𝐴 = 𝑏𝑏 = 𝐴)
2321, 22bitri 264 . . . . . . . . . . 11 𝐴𝑏𝑏 = 𝐴)
2423ralbii 3009 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
2520, 24bitr3i 266 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
26 eqsn 4393 . . . . . . . . . . . . . 14 (𝑉 ≠ ∅ → (𝑉 = {𝐴} ↔ ∀𝑏𝑉 𝑏 = 𝐴))
2726bicomd 213 . . . . . . . . . . . . 13 (𝑉 ≠ ∅ → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2827adantl 481 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2928adantr 480 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
30 hashsnle1 13243 . . . . . . . . . . . . 13 (#‘{𝐴}) ≤ 1
31 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑉 = {𝐴} → (#‘𝑉) = (#‘{𝐴}))
3231breq1d 4695 . . . . . . . . . . . . . 14 (𝑉 = {𝐴} → ((#‘𝑉) ≤ 1 ↔ (#‘{𝐴}) ≤ 1))
3332adantl 481 . . . . . . . . . . . . 13 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → ((#‘𝑉) ≤ 1 ↔ (#‘{𝐴}) ≤ 1))
3430, 33mpbiri 248 . . . . . . . . . . . 12 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → (#‘𝑉) ≤ 1)
3534ex 449 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (𝑉 = {𝐴} → (#‘𝑉) ≤ 1))
3629, 35sylbid 230 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → (#‘𝑉) ≤ 1))
37 hashxrcl 13186 . . . . . . . . . . . . 13 (𝑉𝑊 → (#‘𝑉) ∈ ℝ*)
3837adantr 480 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (#‘𝑉) ∈ ℝ*)
3938adantr 480 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (#‘𝑉) ∈ ℝ*)
409rexri 10135 . . . . . . . . . . 11 1 ∈ ℝ*
41 xrlenlt 10141 . . . . . . . . . . 11 (((#‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((#‘𝑉) ≤ 1 ↔ ¬ 1 < (#‘𝑉)))
4239, 40, 41sylancl 695 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → ((#‘𝑉) ≤ 1 ↔ ¬ 1 < (#‘𝑉)))
4336, 42sylibd 229 . . . . . . . . 9 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → ¬ 1 < (#‘𝑉)))
4425, 43syl5bi 232 . . . . . . . 8 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (¬ ∃𝑏𝑉 𝐴𝑏 → ¬ 1 < (#‘𝑉)))
4544con4d 114 . . . . . . 7 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (1 < (#‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
4645exp31 629 . . . . . 6 (𝑉𝑊 → (𝑉 ≠ ∅ → (𝐴𝑉 → (1 < (#‘𝑉) → ∃𝑏𝑉 𝐴𝑏))))
4746com24 95 . . . . 5 (𝑉𝑊 → (1 < (#‘𝑉) → (𝐴𝑉 → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))))
48473imp 1275 . . . 4 ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))
4948com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5019, 49sylbi 207 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5116, 50pm2.61i 176 1 ((𝑉𝑊 ∧ 1 < (#‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  c0 3948  {csn 4210   class class class wbr 4685  cfv 5926  0cc0 9974  1c1 9975  *cxr 10111   < clt 10112  cle 10113  #chash 13157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158
This theorem is referenced by:  conngrv2edg  27173  3cyclfrgrrn  27266  copisnmnd  42134
  Copyright terms: Public domain W3C validator