MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el2 Structured version   Visualization version   GIF version

Theorem hashgt12el2 13778
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el2 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Distinct variable groups:   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el2
StepHypRef Expression
1 hash0 13722 . . . 4 (♯‘∅) = 0
2 fveq2 6665 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2syl5eqr 2870 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5063 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 231 . . . . . 6 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2829 . . . . 5 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11157 . . . . . 6 0 ≤ 1
8 0re 10637 . . . . . . . 8 0 ∈ ℝ
9 1re 10635 . . . . . . . 8 1 ∈ ℝ
108, 9lenlti 10754 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . 7 (¬ 1 < 0 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
1210, 11sylbi 219 . . . . . 6 (0 ≤ 1 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
137, 12ax-mp 5 . . . . 5 (1 < 0 → ∃𝑏𝑉 𝐴𝑏)
146, 13syl6com 37 . . . 4 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
15143ad2ant2 1130 . . 3 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
163, 15syl5com 31 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
17 df-ne 3017 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
18 necom 3069 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
1917, 18bitr3i 279 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
20 ralnex 3236 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ¬ ∃𝑏𝑉 𝐴𝑏)
21 nne 3020 . . . . . . . . . . . 12 𝐴𝑏𝐴 = 𝑏)
22 eqcom 2828 . . . . . . . . . . . 12 (𝐴 = 𝑏𝑏 = 𝐴)
2321, 22bitri 277 . . . . . . . . . . 11 𝐴𝑏𝑏 = 𝐴)
2423ralbii 3165 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
2520, 24bitr3i 279 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
26 eqsn 4756 . . . . . . . . . . . . . 14 (𝑉 ≠ ∅ → (𝑉 = {𝐴} ↔ ∀𝑏𝑉 𝑏 = 𝐴))
2726bicomd 225 . . . . . . . . . . . . 13 (𝑉 ≠ ∅ → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2827adantl 484 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2928adantr 483 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
30 hashsnle1 13772 . . . . . . . . . . . . 13 (♯‘{𝐴}) ≤ 1
31 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑉 = {𝐴} → (♯‘𝑉) = (♯‘{𝐴}))
3231breq1d 5069 . . . . . . . . . . . . . 14 (𝑉 = {𝐴} → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3332adantl 484 . . . . . . . . . . . . 13 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3430, 33mpbiri 260 . . . . . . . . . . . 12 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → (♯‘𝑉) ≤ 1)
3534ex 415 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (𝑉 = {𝐴} → (♯‘𝑉) ≤ 1))
3629, 35sylbid 242 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → (♯‘𝑉) ≤ 1))
37 hashxrcl 13712 . . . . . . . . . . . . 13 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
3837adantr 483 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
3938adantr 483 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (♯‘𝑉) ∈ ℝ*)
40 1xr 10694 . . . . . . . . . . 11 1 ∈ ℝ*
41 xrlenlt 10700 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4239, 40, 41sylancl 588 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4336, 42sylibd 241 . . . . . . . . 9 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → ¬ 1 < (♯‘𝑉)))
4425, 43syl5bi 244 . . . . . . . 8 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (¬ ∃𝑏𝑉 𝐴𝑏 → ¬ 1 < (♯‘𝑉)))
4544con4d 115 . . . . . . 7 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
4645exp31 422 . . . . . 6 (𝑉𝑊 → (𝑉 ≠ ∅ → (𝐴𝑉 → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))))
4746com24 95 . . . . 5 (𝑉𝑊 → (1 < (♯‘𝑉) → (𝐴𝑉 → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))))
48473imp 1107 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))
4948com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5019, 49sylbi 219 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5116, 50pm2.61i 184 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  c0 4291  {csn 4561   class class class wbr 5059  cfv 6350  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  cle 10670  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  conngrv2edg  27968  3cyclfrgrrn  28059  copisnmnd  44069
  Copyright terms: Public domain W3C validator