MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 13789
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6568 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
21frnd 6514 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ⊆ dom 𝐸)
32adantl 482 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → ran 𝐹 ⊆ dom 𝐸)
4 ssdmres 5869 . . . . 5 (ran 𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
53, 4sylib 219 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
65fveq2d 6667 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran 𝐹))
7 f1fun 6570 . . . . . . . 8 (𝐸:dom 𝐸1-1→ran 𝐸 → Fun 𝐸)
8 funres 6390 . . . . . . . . 9 (Fun 𝐸 → Fun (𝐸 ↾ ran 𝐹))
98funfnd 6379 . . . . . . . 8 (Fun 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
107, 9syl 17 . . . . . . 7 (𝐸:dom 𝐸1-1→ran 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
1110ad2antrr 722 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
12 hashfn 13724 . . . . . 6 ((𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
1311, 12syl 17 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
14 ovex 7178 . . . . . . . 8 (0..^(♯‘𝐹)) ∈ V
15 fex 6980 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (0..^(♯‘𝐹)) ∈ V) → 𝐹 ∈ V)
161, 14, 15sylancl 586 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹 ∈ V)
17 rnexg 7603 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
1816, 17syl 17 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ∈ V)
19 simpll 763 . . . . . . 7 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → 𝐸:dom 𝐸1-1→ran 𝐸)
20 f1ssres 6575 . . . . . . 7 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ ran 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
2119, 3, 20syl2anc 584 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
22 hashf1rn 13701 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2318, 21, 22syl2an2 682 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2413, 23eqtr3d 2855 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
25 df-ima 5561 . . . . 5 (𝐸 “ ran 𝐹) = ran (𝐸 ↾ ran 𝐹)
2625fveq2i 6666 . . . 4 (♯‘(𝐸 “ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹))
2724, 26syl6reqr 2872 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
28 hashf1rn 13701 . . . . 5 (((0..^(♯‘𝐹)) ∈ V ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
2914, 28mpan 686 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘𝐹) = (♯‘ran 𝐹))
3029adantl 482 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
316, 27, 303eqtr4d 2863 . 2 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))
3231ex 413 1 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  wss 3933  dom cdm 5548  ran crn 5549  cres 5550  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  1-1wf1 6345  cfv 6348  (class class class)co 7145  0cc0 10525  ..^cfzo 13021  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-hash 13679
This theorem is referenced by:  hashimarni  13790
  Copyright terms: Public domain W3C validator