Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   GIF version

Theorem hashnzfz 38022
Description: Special case of hashdvds 15407: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n (𝜑𝑁 ∈ ℕ)
hashnzfz.j (𝜑𝐽 ∈ ℤ)
hashnzfz.k (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
Assertion
Ref Expression
hashnzfz (𝜑 → (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))

Proof of Theorem hashnzfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3 (𝜑𝑁 ∈ ℕ)
2 hashnzfz.j . . 3 (𝜑𝐽 ∈ ℤ)
3 hashnzfz.k . . 3 (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
4 0zd 11336 . . 3 (𝜑 → 0 ∈ ℤ)
51, 2, 3, 4hashdvds 15407 . 2 (𝜑 → (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))))
6 elfzelz 12287 . . . . . . . . 9 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ)
76zcnd 11430 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ)
87subid1d 10328 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥)
98breq2d 4627 . . . . . 6 (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁𝑥))
109rabbiia 3173 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥}
11 dfrab3 3880 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥} = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
12 reldvds 38017 . . . . . . . 8 Rel ∥
13 relimasn 5449 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
1412, 13ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1514ineq2i 3791 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
16 incom 3785 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1715, 16eqtr3i 2645 . . . . 5 ((𝐽...𝐾) ∩ {𝑥𝑁𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1810, 11, 173eqtri 2647 . . . 4 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1918fveq2i 6153 . . 3 (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))
2019a1i 11 . 2 (𝜑 → (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))))
21 eluzelz 11644 . . . . . . . 8 (𝐾 ∈ (ℤ‘(𝐽 − 1)) → 𝐾 ∈ ℤ)
223, 21syl 17 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
2322zcnd 11430 . . . . . 6 (𝜑𝐾 ∈ ℂ)
2423subid1d 10328 . . . . 5 (𝜑 → (𝐾 − 0) = 𝐾)
2524oveq1d 6622 . . . 4 (𝜑 → ((𝐾 − 0) / 𝑁) = (𝐾 / 𝑁))
2625fveq2d 6154 . . 3 (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁)))
27 peano2zm 11367 . . . . . . . 8 (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ)
282, 27syl 17 . . . . . . 7 (𝜑 → (𝐽 − 1) ∈ ℤ)
2928zcnd 11430 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℂ)
3029subid1d 10328 . . . . 5 (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1))
3130oveq1d 6622 . . . 4 (𝜑 → (((𝐽 − 1) − 0) / 𝑁) = ((𝐽 − 1) / 𝑁))
3231fveq2d 6154 . . 3 (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁)))
3326, 32oveq12d 6625 . 2 (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
345, 20, 333eqtr3d 2663 1 (𝜑 → (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {cab 2607  {crab 2911  cin 3555  {csn 4150   class class class wbr 4615  cima 5079  Rel wrel 5081  cfv 5849  (class class class)co 6607  0cc0 9883  1c1 9884  cmin 10213   / cdiv 10631  cn 10967  cz 11324  cuz 11634  ...cfz 12271  cfl 12534  #chash 13060  cdvds 14910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-inf 8296  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fl 12536  df-hash 13061  df-dvds 14911
This theorem is referenced by:  hashnzfz2  38023  hashnzfzclim  38024
  Copyright terms: Public domain W3C validator