Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   GIF version

Theorem hashnzfz 40659
Description: Special case of hashdvds 16114: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n (𝜑𝑁 ∈ ℕ)
hashnzfz.j (𝜑𝐽 ∈ ℤ)
hashnzfz.k (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
Assertion
Ref Expression
hashnzfz (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))

Proof of Theorem hashnzfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3 (𝜑𝑁 ∈ ℕ)
2 hashnzfz.j . . 3 (𝜑𝐽 ∈ ℤ)
3 hashnzfz.k . . 3 (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
4 0zd 11996 . . 3 (𝜑 → 0 ∈ ℤ)
51, 2, 3, 4hashdvds 16114 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))))
6 elfzelz 12911 . . . . . . . . 9 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ)
76zcnd 12091 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ)
87subid1d 10988 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥)
98breq2d 5080 . . . . . 6 (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁𝑥))
109rabbiia 3474 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥}
11 dfrab3 4280 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥} = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
12 reldvds 40654 . . . . . . . 8 Rel ∥
13 relimasn 5954 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
1412, 13ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1514ineq2i 4188 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
16 incom 4180 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1715, 16eqtr3i 2848 . . . . 5 ((𝐽...𝐾) ∩ {𝑥𝑁𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1810, 11, 173eqtri 2850 . . . 4 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1918fveq2i 6675 . . 3 (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))
2019a1i 11 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))))
21 eluzelz 12256 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝐽 − 1)) → 𝐾 ∈ ℤ)
223, 21syl 17 . . . . . 6 (𝜑𝐾 ∈ ℤ)
2322zcnd 12091 . . . . 5 (𝜑𝐾 ∈ ℂ)
2423subid1d 10988 . . . 4 (𝜑 → (𝐾 − 0) = 𝐾)
2524fvoveq1d 7180 . . 3 (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁)))
26 peano2zm 12028 . . . . . . 7 (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ)
272, 26syl 17 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
2827zcnd 12091 . . . . 5 (𝜑 → (𝐽 − 1) ∈ ℂ)
2928subid1d 10988 . . . 4 (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1))
3029fvoveq1d 7180 . . 3 (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁)))
3125, 30oveq12d 7176 . 2 (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
325, 20, 313eqtr3d 2866 1 (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {cab 2801  {crab 3144  cin 3937  {csn 4569   class class class wbr 5068  cima 5560  Rel wrel 5562  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540  cmin 10872   / cdiv 11299  cn 11640  cz 11984  cuz 12246  ...cfz 12895  cfl 13163  chash 13693  cdvds 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fl 13165  df-hash 13694  df-dvds 15610
This theorem is referenced by:  hashnzfz2  40660  hashnzfzclim  40661
  Copyright terms: Public domain W3C validator