![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashprdifel | Structured version Visualization version GIF version |
Description: The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
hashprdifel.s | ⊢ 𝑆 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
hashprdifel | ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashprdifel.s | . . . . 5 ⊢ 𝑆 = {𝐴, 𝐵} | |
2 | 1 | fveq2i 6353 | . . . 4 ⊢ (♯‘𝑆) = (♯‘{𝐴, 𝐵}) |
3 | 2 | eqeq1i 2763 | . . 3 ⊢ ((♯‘𝑆) = 2 ↔ (♯‘{𝐴, 𝐵}) = 2) |
4 | hashprb 13375 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ↔ (♯‘{𝐴, 𝐵}) = 2) | |
5 | 3, 4 | bitr4i 267 | . 2 ⊢ ((♯‘𝑆) = 2 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) |
6 | prid1g 4437 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
7 | 6 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ {𝐴, 𝐵}) |
8 | 7, 1 | syl6eleqr 2848 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) |
9 | prid2g 4438 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵}) | |
10 | 9 | 3ad2ant2 1129 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) |
11 | 10, 1 | syl6eleqr 2848 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) |
12 | simp3 1133 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
13 | 8, 11, 12 | 3jca 1123 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
14 | 5, 13 | sylbi 207 | 1 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 Vcvv 3338 {cpr 4321 ‘cfv 6047 2c2 11260 ♯chash 13309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-card 8953 df-cda 9180 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-n0 11483 df-z 11568 df-uz 11878 df-fz 12518 df-hash 13310 |
This theorem is referenced by: mgm2nsgrplem4 17607 mgm2nsgrp 17608 sgrp2rid2ex 17613 sgrp2nmndlem4 17614 sgrp2nmndlem5 17615 umgrnloopv 26198 umgredgprv 26199 umgrpredgv 26232 umgredgne 26237 usgredgprvALT 26284 usgrnloopvALT 26290 |
Copyright terms: Public domain | W3C validator |